

DIFFERENTIAL EQUATIONS SPRING 2011

Assignment 1.1 Due January 21

Exercise 1. Determine the order of each of the following differential equations, and state whether they are linear or nonlinear.

a.
$$t^2 \frac{d^2 y}{dt^2} + t \frac{dy}{dt} + 2y = \sin t$$

b. $(1+y)\frac{d^2 y}{dt^2} + t \frac{dy}{dt} + y = e^t$
c. $\frac{d^4 y}{dt^4} + \frac{d^3 y}{dt^3} + \frac{d^2 y}{dt^2} + \frac{dy}{dt} + y = 1$
d. $\frac{dy}{dt} + ty^2 = 0$
e. $\frac{d^2 y}{dt^2} + \sin(t+y) = \sin t$
f. $\frac{d^3 y}{dt^3} + t \frac{dy}{dt} + (\cos^2 t)y = t^3$

Exercise 2. Use a computer to draw a direction field for each of the following differential equations. Based on the direction field, determine the behavior of y as $t \to \infty$. If this behavior depends on the initial value of y at t = 0, describe this dependency.

a. y' = y(4 - y)b. $y' = y(y - 2)^2$ c. $y' = te^{-2t} - 2y$ d. $y' = 3\sin t + 1 + y$ e. $(1 + t^2)y' + 4ty = (1 + t^2)^{-2}$ f. $2y' + y = 3t^2$

Exercise 3. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differential equation for the volume of the raindrop as a function of time.

Exercise 4. Determine all values of r for which the differential equation $t^2y'' - 4ty' + 4y = 0$ has solutions of the form $y = t^r$ for t > 0.

Exercise 5. Use the chain rule to show that the change of variable $x = \ln t$ transforms the differential equation $t^2 \frac{d^2 y}{dt^2} + at \frac{dy}{dt} + by = 0$, t > 0, into $\frac{d^2 y}{dx^2} + (a-1)\frac{dy}{dx} + by = 0$.