Exercise 1. Determine the order of each of the following differential equations, and state whether they are linear or nonlinear.
a. $t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+2 y=\sin t$
b. $(1+y) \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+y=e^{t}$
c. $\frac{d^{4} y}{d t^{4}}+\frac{d^{3} y}{d t^{3}}+\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=1$
d. $\frac{d y}{d t}+t y^{2}=0$
e. $\frac{d^{2} y}{d t^{2}}+\sin (t+y)=\sin t$
f. $\frac{d^{3} y}{d t^{3}}+t \frac{d y}{d t}+\left(\cos ^{2} t\right) y=t^{3}$

Exercise 2. Use a computer to draw a direction field for each of the following differential equations. Based on the direction field, determine the behavior of y as $t \rightarrow \infty$. If this behavior depends on the initial value of y at $t=0$, describe this dependency.
a. $\quad y^{\prime}=y(4-y)$
b. $y^{\prime}=y(y-2)^{2}$
c. $y^{\prime}=t e^{-2 t}-2 y$
d. $y^{\prime}=3 \sin t+1+y$
e. $\left(1+t^{2}\right) y^{\prime}+4 t y=\left(1+t^{2}\right)^{-2}$
f. $2 y^{\prime}+y=3 t^{2}$

Exercise 3. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differential equation for the volume of the raindrop as a function of time.

Exercise 4. Determine all values of r for which the differential equation $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=0$ has solutions of the form $y=t^{r}$ for $t>0$.

Exercise 5. Use the chain rule to show that the change of variable $x=\ln t$ transforms the differential equation $t^{2} \frac{d^{2} y}{d t^{2}}+a t \frac{d y}{d t}+b y=0, t>0$, into $\frac{d^{2} y}{d x^{2}}+(a-1) \frac{d y}{d x}+b y=0$.

