Exercise 1. Consider the initial value problem

$$
y^{\prime}+\frac{2}{3} y=1-\frac{1}{2} t, \quad y(0)=y_{0} .
$$

Find the value of y_{0} for which the solution touches, but does not cross, the t-axis.

Exercise 2. Consider the initial value problem

$$
y^{\prime}-\frac{2}{3} y=3 t+2 e^{t}, \quad y(0)=y_{0}
$$

Find the value of y_{0} that separates solutions that grow positively as $t \rightarrow \infty$ from those that grow negatively. How does the solution that corresponds to this critical value of y_{0} behave as $t \rightarrow \infty$?

Exercise 3. Construct a first order linear differential equation all of whose solutions approach the curve $y=4-t^{2}$ as $t \rightarrow \infty$. Solve your differential equation and confirm that the solutions do indeed have this property.

Exercise 4. Solve the initial value problem

$$
y^{\prime}=\frac{1+3 x^{2}}{3 y^{2}-6 y}, \quad y(0)=1
$$

and determine the interval in which the solution is valid. [Hint: To find the interval of definition, look for points where the solution has vertical tangents.]

Exercise 5. Consider the initial value problem

$$
y^{\prime}=\frac{t y(4-y)}{1+t}, \quad y(0)=y_{0}>0
$$

a. Determine how the solution behaves as $t \rightarrow \infty$.
b. If $y_{0}=2$, find the time T at which the solution first reaches the value 3.99.
c. Find the range of initial values for which the solution lies in the interval $3.99<y<4.01$ by the time $t=2$.

