Differential Equations

Assignment 5.1 Spring 2011

We have seen that if $p(t)$ and $q(t)$ are continuous on an open interval I on which $q(t)$ is positive, in order for a change of variable of the form $x=x(t)$ to transform the differential equation $\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=0$ into one with constant coefficients, it is necessary and sufficient that

$$
\begin{equation*}
\frac{q^{\prime}(t)+2 p(t) q(t)}{q(t)^{3 / 2}} \text { is constant. } \tag{1}
\end{equation*}
$$

Moreover, in this case the required change of variables is

$$
x=\int q(t)^{1 / 2} d t
$$

Exercise 1. Show that every Euler equation $t^{2} y^{\prime \prime}+a t y^{\prime}+b y=0(t>0)$ satisfies (1). You may assume that $b>0$.

Exercise 2. 3.3.36

Exercise 3. 3.3.40

Exercise 4. 3.4.41

Exercise 5. 3.3.45

Exercise 6. Determine every possible function $p(t)$ for which $y^{\prime \prime}+p(t) y^{\prime}+t y=0(t>0)$ can be transformed into an equation with constant coefficients, and determine the required change of variables.

