Exercise 1. If $L[y]=y^{\prime \prime}+p y^{\prime}+q y$, where p and q are any two functions, show that $L[f g]=f L[g]+g L[f]-q f g+2 f^{\prime} g^{\prime}$.

Exercise 2. If $L[y]=y^{\prime \prime}+a y^{\prime}+b y$, where a and b are constants, show that

$$
L\left[t^{n} e^{k t}\right]=\left(t^{n} c(k)+n t^{n-1} c^{\prime}(k)+n(n-1) t^{n-2}\right) e^{k t}
$$

where $c(x)=x^{2}+a x+b$.

Exercise 3. Let L be as in Exercise 2. Let V_{n} be the vector space of functions spanned by $\left\{e^{k t}, t e^{k t}, t^{2} e^{k t}, \ldots, t^{n} e^{k t}\right\}$, i.e. the space of all functions of the form $f(t) e^{k t}$ where f is a polynomial of degree at most n. Show that L is a linear transformation from V_{n} to itself, and that L is invertible if and only if $c(k) \neq 0$.

Exercise 4. Let everything be as above. Show that $T: V_{n} \rightarrow V_{n+1}$, given by $T(y)=t y$, is a linear transformation. If $W_{n}=\operatorname{Im} T$ and $c(k)=0$, show that L is an invertible linear transformation from W_{n} to V_{n}.

Remark. The previous two exercises provide an algorithm for finding a particular solution to any differential equation of the form $y^{\prime \prime}+a y^{\prime}+b y=f(t) e^{k t}$, where f is a polynomial. This is the method of undetermined coefficients.

Exercise 5. Let $L[y]=y^{\prime \prime}+y^{\prime}+y$. If $k=1$, find the matrix M for $L: V_{3} \rightarrow V_{3}$ relative to the basis given in Exercise 2. Compute M^{-1} and use this to (easily!) solve the following differential equations.
a. $y^{\prime \prime}+y^{\prime}+y=\left(t^{3}+t+1\right) e^{t}$
b. $y^{\prime \prime}+y^{\prime}+y=\left(3 t^{2}+2 t-1\right) e^{t}$
c. $y^{\prime \prime}+y^{\prime}+y=\left(2 t^{3}-3 t\right) e^{t}$

