Differential Equations
Assignment 9.1 Spring 2011

Exercise 1. Consider the equation

$$
\begin{equation*}
\left(1+x^{2}\right) y^{\prime \prime}+A x y^{\prime}+B y=0 \tag{1}
\end{equation*}
$$

where A and B are arbitrary (real) constants.
a. Show that (1) has analytic solutions centered at $x_{0}=0$ with radii of convergence at least 1.
b. Show that if

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is a solution to (1) then its coefficients satisfy

$$
\begin{equation*}
a_{n+2}=\frac{-\left(n^{2}+(A-1) n+B\right)}{(n+2)(n+1)} a_{n} \tag{2}
\end{equation*}
$$

for $n \geq 0$.
c. Let y_{1} denote the solution with $a_{0}=1$ and $a_{1}=0$. If $A=1$ and $B=-1$, find a closed form expression for a_{n}.
d. Repeat part (c) for the solution y_{2} that satisfies $a_{0}=0, a_{1}=1$.
e. Find values of A and B so that (1) has only rational solutions. State these solutions explicitly. [Suggestion: Adjust A and B so that the rational function in n appearing in (2) "goes away."]

