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notes, homework and course textbook (indeed, you are fully expected to), but no other
resources are permitted. Be sure to staple this page to the front of your exam solutions.
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1. Prove that
∑
m|n

d(m)3 =

∑
m|n

d(m)

2

.

2.

a. Let f and g be multiplicative arithmetic functions and let a ∈ N. Prove that the
function h defined by

h(n) =
∑
da|n

f
( n
da

)
is also multiplicative. [Suggestion: Show that the arithmetic function q that is 1 on the
ath powers, and zero elsewhere, is multiplicative.]

b. Prove that Liouville’s function satisfies

λ(n) =
∑
d2|n

µ
( n
d2

)
.

3. Prove or disprove the following statements

a. If f is a multiplicative arithmetic function, then so is

F (n) =
∏
d|n

f(d).

b. If f and g are differentiable and f(x) = O(g(x)) then f ′(x) = O(max{1, |g′(x)|}).

4. Given a natural number k, show that there is a constant Ak so that∑
n≤x

(n,k)=1

1

n
=
ϕ(k)

k
log x+ Ak +O

(
1

x

)
.

5. Prove the following asymptotic formulas.

a.
∑
n≤x

log2 n = x log2 x+O(x log x)

b.
∑
p≤x

log2 p = O(x log x)

6. Bertrand’s postulate states that for any x ≥ 1 there is a prime p ∈ (x, 2x].1 Show that the
Prime Number Theorem implies the following weaker form of Bertrand’s postulate: there
is an x0 > 0 so that for all x ≥ x0 there is a prime p ∈ (x, 2x]. [Suggestion: Consider the
quantity π(2x)− π(x).]

1This was first proven by Chebyshev in 1852.


