Exercise 1. Chapter 6, \#14

Exercise 2. Chapter 6, \#15

Exercise 3. Chapter 6, \#17. Suggestions:
a. At the outset, it's not a bad idea to prove that if f has period k and $a, m \in \mathbb{N}$ then $f(m+a k)=f(m)$ (use induction on a).
b. For part (a), use the division algorithm to divide k_{0} into k, and use the fact above to help you show that the remainder is also a period of f, and hence equal to zero (why?).
c. For part (b), show first that if $k>1$ (the result is trivial if $k=1$) then f is not constant. By considering values of f at multiples of k, use multiplicativity and periodicity to show that $f(k)=0$.
d. Finally, show that if $k=a b$ and $f(b) \neq 0$ then a is a period of f. Use this to prove that $f(d)=0$ for all divisors of k other than 1 .

