

Number Theory II Fall 2010

Assignment 13.1 Due December 1

Exercise 1. Let f and g be continuously differentiable real-valued functions on the interval [a, b]. Define the complex-valued function F on [a, b] by F(x) = f(x) + ig(x). Show that F(x) = F(a) + O(x - a) for all $x \in [a, b]$. Conclude that if F(a) = 0 then there is a constant C so that $|F(x)| \leq C(x - a)$ for all $x \in [a, b]$. [Suggestion: Apply the mean value theorem to f and g on the interval [a, x].]

Exercise 2. Let χ be a real-valued Dirichlet character. Prove that $\zeta(s)L(s,\chi) \geq \zeta(2s)$ for s > 1. [Suggestion: The series defining $\zeta(s)$ and $L(s,\chi)$ are absolutely convergent for s > 1 and can be multiplied term by term. Do this, and then use Theorem 6.19.]