Number Theory II
Assignment 13.1
FALL 2010
Due December 1

Exercise 1. Let f and g be continuously differentiable real-valued functions on the interval $[a, b]$. Define the complex-valued function F on $[a, b]$ by $F(x)=f(x)+i g(x)$. Show that $F(x)=F(a)+O(x-a)$ for all $x \in[a, b]$. Conclude that if $F(a)=0$ then there is a constant C so that $|F(x)| \leq C(x-a)$ for all $x \in[a, b]$. [Suggestion: Apply the mean value theorem to f and g on the interval $[a, x]$.]

Exercise 2. Let χ be a real-valued Dirichlet character. Prove that $\zeta(s) L(s, \chi) \geq \zeta(2 s)$ for $s>1$. [Suggestion: The series defining $\zeta(s)$ and $L(s, \chi)$ are absolutely convergent for $s>1$ and can be multiplied term by term. Do this, and then use Theorem 6.19.]

