Number Theory II
Assignment 4.2
FALL 2010
Due September 22

Exercise 1. Interpret, and then verify, the following equalities. Throughout, $g(x)$ and $h(x)$ denote nonnegative functions.
a. $O(g(x))+O(h(x))=O(\max \{g(x), h(x)\})$.
b. $g(x) O(h(x))=O(g(x) h(x))=O(g(x)) O(h(x))$.
c. $O(O(g(x)))=O(g(x))$.

Exercise 2.

a. Let $f(x)$ and $g(x)$ be polynomials with real coefficients of degrees m and n, respectively. Prove that

$$
\lim _{x \rightarrow \infty} \frac{f(x) x^{n-m}}{g(x)}
$$

exists and is nonzero.
b. Prove that

$$
\frac{f(x)}{g(x)}=O\left(x^{m-n}\right)
$$

for all sufficiently large x. What does the implied constant depend on?

Exercise 3. Let $\epsilon>0$. Prove that

$$
\log x=O\left(x^{\epsilon}\right)
$$

for all sufficiently large x. Does the implied constant depend on ϵ ?

