

Number Theory II Fall 2010

Assignment 6.2 Due October 6

Exercise 1. Suppose that f satisfies all of the hypotheses of the Euler Summation Formula, and that in addition

- (i) $\lim_{x \to \infty} f(x) = 0;$
- (ii) there is an M so that f is monotone for $x \ge M$.

Prove that

$$\sum_{1 < n \le x} f(n) = \int_{1}^{x} f(t) \, dt + A(f) + O\left(|f(x)|\right)$$

where A(f) is a constant that depends only on f.

Exercise 2. Given $n \in \mathbb{N}$, let \mathcal{F}_n denote the set of rational numbers in [0, 1] that can be written in the form a/b with $1 \leq b \leq n$. \mathcal{F}_n is known as the set of *Farey fractions of order* n. So, for example

$$\mathcal{F}_{1} = \{0, 1\}$$

$$\mathcal{F}_{2} = \left\{0, \frac{1}{2}, 1\right\}$$

$$\mathcal{F}_{3} = \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\}$$

$$\mathcal{F}_{4} = \left\{0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, 1\right\}.$$

Find an asymptotic expression for $|\mathcal{F}_n|$. [Suggestion: Relate $|\mathcal{F}_n|$ to $\overline{\varphi}(n)$.]