Exercise 1. Suppose that f satisfies all of the hypotheses of the Euler Summation Formula, and that in addition
(i) $\lim _{x \rightarrow \infty} f(x)=0$;
(ii) there is an M so that f is monotone for $x \geq M$.

Prove that

$$
\sum_{1<n \leq x} f(n)=\int_{1}^{x} f(t) d t+A(f)+O(|f(x)|)
$$

where $A(f)$ is a constant that depends only on f.

Exercise 2. Given $n \in \mathbb{N}$, let \mathcal{F}_{n} denote the set of rational numbers in $[0,1]$ that can be written in the form a / b with $1 \leq b \leq n . \mathcal{F}_{n}$ is known as the set of Farey fractions of order n. So, for example

$$
\begin{aligned}
\mathcal{F}_{1} & =\{0,1\} \\
\mathcal{F}_{2} & =\left\{0, \frac{1}{2}, 1\right\} \\
\mathcal{F}_{3} & =\left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\} \\
\mathcal{F}_{4} & =\left\{0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, 1\right\} .
\end{aligned}
$$

Find an asymptotic expression for $\left|\mathcal{F}_{n}\right|$. [Suggestion: Relate $\left|\mathcal{F}_{n}\right|$ to $\bar{\varphi}(n)$.]

