Exercise 1. Let $d_{n}=\operatorname{lcm}(1,2,3, \ldots, n)$, let p be a prime, and let $a \in \mathbb{N}$. Prove that p^{a} divides d_{n} if and only if $p^{a} \leq n$.

Exercise 2. Use Abel summation to prove that for $x \geq 2$

$$
\sum_{p \leq x} \frac{1}{p}=\frac{\pi(x)}{x}+\int_{2}^{x} \frac{\pi(t)}{t^{2}} d t
$$

Use this and the bounds for $\pi(x)$ that we have proven in class (or the prime number theorem, if you want to go that far) to determine whether $\sum_{p} \frac{1}{p}$ converges or diverges.

