Exercise 1. Let f be a real-valued function that is Riemann integrable on every finite subinterval of $[0, \infty)$. Assume further that $\lim _{x \rightarrow \infty} f(x)=0$.
a. Show that for any $\epsilon>0$ there is an $M>0$ so that for all $x \geq M$

$$
\left|\frac{1}{x} \int_{M}^{x} f(t) d t\right|<\frac{\epsilon}{2} .
$$

b. For M and ϵ as in part a, show that there is an $N \geq M$ so that if $x \geq N$ then

$$
\left|\frac{1}{x} \int_{0}^{M} f(t) d t\right|<\frac{\epsilon}{2}
$$

c. Use parts \mathbf{a} and \mathbf{b} to conclude that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \int_{0}^{x} f(t) d t=0
$$

Exercise 2. Chapter 4, 27(a) [Note: You may assume that $A(x)=O(x)$, which is actually a consequence of the stated hypotheses: see the first part of the proof of Theorem 4.8.]

