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Exercise 1. Let f be a real-valued function that is Riemann integrable on every finite
subinterval of [0, c0). Assume further that lim f(z) = 0.

a. Show that for any € > 0 there is an M > 0 so that for all z > M
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b. For M and € as in part a, show that there is an N > M so that if x > N then
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c. Use parts a and b to conclude that
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lim — [ f(¢)dt=0.
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Exercise 2. Chapter 4, 27(a) [Note: You may assume that A(x) = O(x), which is actually
a consequence of the stated hypotheses: see the first part of the proof of Theorem 4.8.]



