

Number Theory II Fall 2010

Assignment 10.1 Due November 3

Exercise 1. Let $\mathbb{C}^{\times} = \mathbb{C} - \{0\}$ and $U = \{z \in \mathbb{C} : |z| = 1\}.$

- **a.** Show that \mathbb{C}^{\times} is a group under multiplication.
- **b.** Show that U is a subgroup of \mathbb{C}^{\times} .
- **c.** Show that if G is a subgroup of \mathbb{C}^{\times} and $G \not\subseteq U$, then $\{|z| : z \in G\}$ is unbounded.
- **d.** Show that if G is a finite subgroup of \mathbb{C}^{\times} then $G \subseteq U$.

Exercise 2. Show that every finite subgroup of \mathbb{C}^{\times} is cyclic. [Suggestion: If the subgroup is nontrivial, show the element with the smallest (nonzero) argument is a generator.]