Homework #10 Solutions

p 348, #10 The keys to this exercise are the following.

Lemma 1. Let V be a vector space over a field F. If {vy,...,v,} is a linearly independent
set in Vo and w & (vy,...,v,) then {vy,...,v,,w} is linearly independent as well.

Proof. Let ay,...,a,,b € F so that ajv; + -+ + a,v, + bw = 0. If b # 0 then we have
w=(=b"ray)vy + -+ (=b"tay)v, € (v1,...,0,)

which is a contradiction. It follows that b = 0 and so 0 = ayv; + - - - + a,v, + bw = aqv; +

-+« + a,v,, which implies, via the linear independence of vy,...,v,, that a; =--- = a, = 0.
That is, the only linear combination of vy, ..., v,,w that equals 0 is the trivial combination.
Hence, {v1,...,v,, w} is linearly independent. ]

Lemma 2. Let V' be a vector space over a field F. If {vi,...,v,} is a basis for V and

{wy,...,wy} is a linearly independent set in 'V then m < n.
Proof. The proof of Theorem 19.1 can be used, word for word. n
Now let S = {vy,v9,...,v,} be aset of linearly independent vectors in a finite dimensional

vector space V. If (S) = V then S is a basis for V and we are finished. Otherwise we can
find a vector w; € V, wy ¢ (S) and according to the first lemma S; = S U {w, } is linearly
independent in V. If (S;) = V then S; is a basis and we are finished. Otherwise, we can
repeat the steps above to create a linearly independent set Sy = S U {wq,ws}. We continue
building linearly independent sets .S; in V' this way. This process cannot continue indefinitely
since the second lemma gives an upper bound on the size of linearly independent sets in V.
Thus, there must be an m so that S,, = SU{ws,...,w,} actually spans V" and therefore is
a basis.

p 348, #20 Let U be a proper subspace of V' with basis {vq,...,v,,}. Since U is proper,
{v1,...,v,} cannot be a basis for V. According to exercise 10, then, there are vectors
Wy, Wy, ..., Wy, (n > 1) so that {vy,..., vy, wy,...,w,} is a basis for V. But then

dmU=m<m+n=dmV

as claimed.

p 349, #22 Let V be a vector space of dimension n over Z, with basis {vy,ve,..., v, }.
Then every element of V' can be written in the form a,v; + asvs + - - - + a, v, for some unique
scalars ay,aq,...,a, € Z,. Because there are exactly p choices for each a; and different
scalars result in different elements of V', we conclude immediately that there are p™ elements
in V.



p 365, #4 We see that in C we have

2t = (@ = i)(@® +1) = (r — Vi) (@ + Vi) (& — Vi) (z + Vi)

so that the splitting field for z* + 1 over Q is Q(v/4,4v/i). However, since i € Q(v/4), the
splitting field can be written more simply as Q(v/4).

p 365, #8 Since f(z) = z® + r + 1 has no zeros in Z, it is irreducible over this field.
Therefore, if a is a root of f(z) then the set {1,a,a*} is a basis for Zy(a) over Zy. It follows
that Zy(a) has exactly 8 elements: 0,1,a,a% 1+ a,1+ a?, a+ a® 1+ a+ a? Using the fact
that a® + a + 1 = 0 the multiplication table for Zy(a) is as follows.

0 1 a a® 1+a 1+ a? a+ a? 1+a+a?
0 0 0 0 0 0 0 0 0
1 0 1 a a? 1+a 1+a? a+a®> 1+4+a+ad?
a 0 a a? 1+a a+ a? 1 l1+a+a®> 1+a?
a? 0 a? l+a at+a® 14+a+ad® a 1+ a? 1
1+4+a 0 1+4+a a+ a? 1+a+a? 1+a? a? 1 a
1+a? |0 1+ad? 1 a a’ 1+a+a? l+a a+a?
a+a®> |0 a+a® 1+a+ad® 1+ a? 1 1+a a a?
l+a+a* |0 14+a+a® 1+ a? 1 a a+ a? a’ 1+a

p 366, #10 Let f(z) = 2° + x + 1. Then, since we are

a+a+1=0,
f(a®)

and

f(a®+a)

in characteristic 2 and f(a)

a®+a®+1
(a®+a)*+1
12+1
=0

(a®* +a)® + (a®* +a)+1
(a> +a)a+a*+a+1
+a+a*+a+1
a®+a+1

0.

p 366, #16 If f(x) =x'+x+1 and 8 € E/Zy is aroot of f(z) then, since we are working



in characteristic 2,

fB+1) = B+1)'+(B+1)+1
Br4+1+p
0

and

f(8%) = (' +82+1
= B+ 5 +1
(B+1)*+ 52 +1
= F+1+8+1
= 0.

However, this reasoning applies equally well to any root of f(z). Thus, since 3? is a root,
so too is 32 4+ 1. Finally, since f(z) is irreducible of degree 4 over Zs, the elements 3, 3 +
1,32, 3% + 1 are all distinct in Zy(3) C E. It follows that

fl@) = (z =Bz — B+ 1) - ) (- (8°+1))

over L.
p 366, #22 If f(z),g(x) € F[z]| are relatively prime then we know from previous work
that there exist r(x), s(x) € F[z] so that r(z)f(z) + s(x)g(z) = 1. Let c(z) be any common

divisor of f(z) and g(z) in K[z]. Then there exist f(z),(z) € K|[z] so that f(z) = c(z) f(x)
and g(x) = ¢(x)g(x). Then we have

~

L=r(2)f(z) + s(x)g(x) = c(z)(r(z) f(z) + s(2)g(z))

which means that ¢(z) is a unit in K[z], i.e. degc(z) = 0. Since c¢(x) was an arbitrary
common divisor of f(x) and ¢g(z) in Klz], we conclude that f(z) and g(x) have no common
divisors in K[z| of positive degree. That is, f(z) and g(z) are relatively prime in K[z].



