Homework #10 Solutions

p 348, #10 The keys to this exercise are the following.

Lemma 1. Let V be a vector space over a field F. If $\{v_1, \ldots, v_n\}$ is a linearly independent set in V and $w \notin \langle v_1, \ldots, v_n \rangle$ then $\{v_1, \ldots, v_n, w\}$ is linearly independent as well.

Proof. Let $a_1, \ldots, a_n, b \in F$ so that $a_1v_1 + \cdots + a_nv_n + bw = 0$. If $b \neq 0$ then we have

$$w = (-b^{-1}a_1)v_1 + \dots + (-b^{-1}a_n)v_n \in \langle v_1, \dots, v_n \rangle$$

which is a contradiction. It follows that b = 0 and so $0 = a_1v_1 + \cdots + a_nv_n + bw = a_1v_1 + \cdots + a_nv_n$, which implies, via the linear independence of v_1, \ldots, v_n , that $a_1 = \cdots = a_n = 0$. That is, the only linear combination of v_1, \ldots, v_n, w that equals 0 is the trivial combination. Hence, $\{v_1, \ldots, v_n, w\}$ is linearly independent.

Lemma 2. Let V be a vector space over a field F. If $\{v_1, \ldots, v_n\}$ is a basis for V and $\{w_1, \ldots, w_m\}$ is a linearly independent set in V then $m \leq n$.

Proof. The proof of Theorem 19.1 can be used, word for word.

Now let $S = \{v_1, v_2, \ldots, v_n\}$ be a set of linearly independent vectors in a finite dimensional vector space V. If $\langle S \rangle = V$ then S is a basis for V and we are finished. Otherwise we can find a vector $w_1 \in V$, $w_1 \notin \langle S \rangle$ and according to the first lemma $S_1 = S \cup \{w_1\}$ is linearly independent in V. If $\langle S_1 \rangle = V$ then S_1 is a basis and we are finished. Otherwise, we can repeat the steps above to create a linearly independent set $S_2 = S \cup \{w_1, w_2\}$. We continue building linearly independent sets S_i in V this way. This process cannot continue indefinitely since the second lemma gives an upper bound on the size of linearly independent sets in V. Thus, there must be an m so that $S_m = S \cup \{w_1, \ldots, w_m\}$ actually spans V and therefore is a basis.

p 348, #20 Let U be a proper subspace of V with basis $\{v_1, \ldots, v_m\}$. Since U is proper, $\{v_1, \ldots, v_m\}$ cannot be a basis for V. According to exercise 10, then, there are vectors w_1, w_2, \ldots, w_n $(n \ge 1)$ so that $\{v_1, \ldots, v_m, w_1, \ldots, w_n\}$ is a basis for V. But then

$$\dim U = m < m + n = \dim V$$

as claimed.

p 349, #22 Let V be a vector space of dimension n over \mathbb{Z}_p with basis $\{v_1, v_2, \ldots, v_n\}$. Then every element of V can be written in the form $a_1v_1 + a_2v_2 + \cdots + a_nv_n$ for some unique scalars $a_1, a_2, \ldots, a_n \in \mathbb{Z}_p$. Because there are exactly p choices for each a_i and different scalars result in different elements of V, we conclude immediately that there are p^n elements in V. **p** 365, #4 We see that in \mathbb{C} we have

$$x^{4} = (x^{2} - i)(x^{2} + i) = (x - \sqrt{i})(x + \sqrt{i})(x - i\sqrt{i})(x + i\sqrt{i})$$

so that the splitting field for $x^4 + 1$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{i}, i\sqrt{i})$. However, since $i \in \mathbb{Q}(\sqrt{i})$, the splitting field can be written more simply as $\mathbb{Q}(\sqrt{i})$.

p 365, #8 Since $f(x) = x^3 + x + 1$ has no zeros in \mathbb{Z}_2 it is irreducible over this field. Therefore, if a is a root of f(x) then the set $\{1, a, a^2\}$ is a basis for $\mathbb{Z}_2(a)$ over \mathbb{Z}_2 . It follows that $\mathbb{Z}_2(a)$ has exactly 8 elements: $0, 1, a, a^2, 1 + a, 1 + a^2, a + a^2, 1 + a + a^2$. Using the fact that $a^3 + a + 1 = 0$ the multiplication table for $\mathbb{Z}_2(a)$ is as follows.

	0	1	a	a^2	1+a	$1 + a^2$	$a + a^2$	$1 + a + a^2$
0	0	0	0	0	0	0	0	0
1	0	1	a	a^2	1+a	$1 + a^2$	$a + a^2$	$1 + a + a^2$
a	0	a	a^2	1+a	$a + a^2$	1	$1 + a + a^2$	$1 + a^2$
a^2	0	a^2	1+a	$a + a^2$	$1 + a + a^2$	a	$1 + a^2$	1
1+a	0	1+a	$a + a^2$	$1+a+a^2$	$1 + a^{2}$	a^2	1	a
$1 + a^2$	0	$1 + a^2$	1	a	a^2	$1 + a + a^2$	1+a	$a + a^2$
$a + a^2$	0	$a + a^2$	$1 + a + a^2$	$1 + a^2$	1	1+a	a	a^2
$1 + a + a^2$	0	$1 + a + a^2$	$1 + a^{2}$	1	a	$a + a^2$	a^2	1+a

p 366, #10 Let $f(x) = x^3 + x + 1$. Then, since we are in characteristic 2 and $f(a) = a^3 + a + 1 = 0$,

$$f(a^{2}) = a^{6} + a^{2} + 1$$

= $(a^{3} + a)^{2} + 1$
= $1^{2} + 1$
= 0

and

$$f(a^{2} + a) = (a^{2} + a)^{3} + (a^{2} + a) + 1$$

= $(a^{2} + a)a + a^{2} + a + 1$
= $a^{3} + a^{2} + a^{2} + a + 1$
= $a^{3} + a + 1$
= 0.

p 366, #16 If $f(x) = x^4 + x + 1$ and $\beta \in E/\mathbb{Z}_2$ is a root of f(x) then, since we are working

in characteristic 2,

$$f(\beta + 1) = (\beta + 1)^4 + (\beta + 1) + 1$$

= $\beta^4 + 1 + \beta$
= 0

and

$$f(\beta^2) = (\beta^2)^4 + \beta^2 + 1 = (\beta^4)^2 + \beta^2 + 1 = (\beta + 1)^2 + \beta^2 + 1 = \beta^2 + 1 + \beta^2 + 1 = 0.$$

However, this reasoning applies equally well to any root of f(x). Thus, since β^2 is a root, so too is $\beta^2 + 1$. Finally, since f(x) is irreducible of degree 4 over \mathbb{Z}_2 , the elements $\beta, \beta + 1, \beta^2, \beta^2 + 1$ are all distinct in $\mathbb{Z}_2(\beta) \subset E$. It follows that

$$f(x) = (x - \beta)(x - (\beta + 1))(x - \beta^2)(x - (\beta^2 + 1))$$

over E.

p 366, #22 If $f(x), g(x) \in F[x]$ are relatively prime then we know from previous work that there exist $r(x), s(x) \in F[x]$ so that r(x)f(x) + s(x)g(x) = 1. Let c(x) be any common divisor of f(x) and g(x) in K[x]. Then there exist $\widehat{f}(x), \widehat{g}(x) \in K[x]$ so that $f(x) = c(x)\widehat{f}(x)$ and $g(x) = c(x)\widehat{g}(x)$. Then we have

$$1 = r(x)f(x) + s(x)g(x) = c(x)(r(x)\widehat{f}(x) + s(x)\widehat{g}(x))$$

which means that c(x) is a unit in K[x], i.e. $\deg c(x) = 0$. Since c(x) was an arbitrary common divisor of f(x) and g(x) in K[x], we conclude that f(x) and g(x) have no common divisors in K[x] of positive degree. That is, f(x) and g(x) are relatively prime in K[x].