
Homework #10 Solutions

p 348, #10 The keys to this exercise are the following.

Lemma 1. Let V be a vector space over a field F . If {v1, . . . , vn} is a linearly independent
set in V and w 6∈ 〈v1, . . . , vn〉 then {v1, . . . , vn, w} is linearly independent as well.

Proof. Let a1, . . . , an, b ∈ F so that a1v1 + · · ·+ anvn + bw = 0. If b 6= 0 then we have

w = (−b−1a1)v1 + · · ·+ (−b−1an)vn ∈ 〈v1, . . . , vn〉

which is a contradiction. It follows that b = 0 and so 0 = a1v1 + · · · + anvn + bw = a1v1 +
· · ·+ anvn, which implies, via the linear independence of v1, . . . , vn, that a1 = · · · = an = 0.
That is, the only linear combination of v1, . . . , vn, w that equals 0 is the trivial combination.
Hence, {v1, . . . , vn, w} is linearly independent.

Lemma 2. Let V be a vector space over a field F . If {v1, . . . , vn} is a basis for V and
{w1, . . . , wm} is a linearly independent set in V then m ≤ n.

Proof. The proof of Theorem 19.1 can be used, word for word.

Now let S = {v1, v2, . . . , vn} be a set of linearly independent vectors in a finite dimensional
vector space V . If 〈S〉 = V then S is a basis for V and we are finished. Otherwise we can
find a vector w1 ∈ V , w1 6∈ 〈S〉 and according to the first lemma S1 = S ∪ {w1} is linearly
independent in V . If 〈S1〉 = V then S1 is a basis and we are finished. Otherwise, we can
repeat the steps above to create a linearly independent set S2 = S ∪ {w1, w2}. We continue
building linearly independent sets Si in V this way. This process cannot continue indefinitely
since the second lemma gives an upper bound on the size of linearly independent sets in V .
Thus, there must be an m so that Sm = S ∪ {w1, . . . , wm} actually spans V and therefore is
a basis.

p 348, #20 Let U be a proper subspace of V with basis {v1, . . . , vm}. Since U is proper,
{v1, . . . , vm} cannot be a basis for V . According to exercise 10, then, there are vectors
w1, w2, . . . , wn (n ≥ 1) so that {v1, . . . , vm, w1, . . . , wn} is a basis for V . But then

dim U = m < m + n = dim V

as claimed.

p 349, #22 Let V be a vector space of dimension n over Zp with basis {v1, v2, . . . , vn}.
Then every element of V can be written in the form a1v1 +a2v2 + · · ·+anvn for some unique
scalars a1, a2, . . . , an ∈ Zp. Because there are exactly p choices for each ai and different
scalars result in different elements of V , we conclude immediately that there are pn elements
in V .



p 365, #4 We see that in C we have
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so that the splitting field for x4 + 1 over Q is Q(
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i). However, since i ∈ Q(
√

i), the
splitting field can be written more simply as Q(

√
i).

p 365, #8 Since f(x) = x3 + x + 1 has no zeros in Z2 it is irreducible over this field.
Therefore, if a is a root of f(x) then the set {1, a, a2} is a basis for Z2(a) over Z2. It follows
that Z2(a) has exactly 8 elements: 0, 1, a, a2, 1 + a, 1 + a2, a + a2, 1 + a + a2. Using the fact
that a3 + a + 1 = 0 the multiplication table for Z2(a) is as follows.

0 1 a a2 1 + a 1 + a2 a + a2 1 + a + a2

0 0 0 0 0 0 0 0 0

1 0 1 a a2 1 + a 1 + a2 a + a2 1 + a + a2

a 0 a a2 1 + a a + a2 1 1 + a + a2 1 + a2

a2 0 a2 1 + a a + a2 1 + a + a2 a 1 + a2 1

1 + a 0 1 + a a + a2 1 + a + a2 1 + a2 a2 1 a

1 + a2 0 1 + a2 1 a a2 1 + a + a2 1 + a a + a2

a + a2 0 a + a2 1 + a + a2 1 + a2 1 1 + a a a2

1 + a + a2 0 1 + a + a2 1 + a2 1 a a + a2 a2 1 + a

p 366, #10 Let f(x) = x3 + x + 1. Then, since we are in characteristic 2 and f(a) =
a3 + a + 1 = 0,

f(a2) = a6 + a2 + 1

= (a3 + a)2 + 1

= 12 + 1

= 0

and

f(a2 + a) = (a2 + a)3 + (a2 + a) + 1

= (a2 + a)a + a2 + a + 1

= a3 + a2 + a2 + a + 1

= a3 + a + 1

= 0.

p 366, #16 If f(x) = x4 + x + 1 and β ∈ E/Z2 is a root of f(x) then, since we are working



in characteristic 2,

f(β + 1) = (β + 1)4 + (β + 1) + 1

= β4 + 1 + β

= 0

and

f(β2) = (β2)4 + β2 + 1

= (β4)2 + β2 + 1

= (β + 1)2 + β2 + 1

= β2 + 1 + β2 + 1

= 0.

However, this reasoning applies equally well to any root of f(x). Thus, since β2 is a root,
so too is β2 + 1. Finally, since f(x) is irreducible of degree 4 over Z2, the elements β, β +
1, β2, β2 + 1 are all distinct in Z2(β) ⊂ E. It follows that

f(x) = (x− β)(x− (β + 1))(x− β2)(x− (β2 + 1))

over E.

p 366, #22 If f(x), g(x) ∈ F [x] are relatively prime then we know from previous work
that there exist r(x), s(x) ∈ F [x] so that r(x)f(x) + s(x)g(x) = 1. Let c(x) be any common

divisor of f(x) and g(x) in K[x]. Then there exist f̂(x), ĝ(x) ∈ K[x] so that f(x) = c(x)f̂(x)
and g(x) = c(x)ĝ(x). Then we have

1 = r(x)f(x) + s(x)g(x) = c(x)(r(x)f̂(x) + s(x)ĝ(x))

which means that c(x) is a unit in K[x], i.e. deg c(x) = 0. Since c(x) was an arbitrary
common divisor of f(x) and g(x) in K[x], we conclude that f(x) and g(x) have no common
divisors in K[x] of positive degree. That is, f(x) and g(x) are relatively prime in K[x].


