Homework \#10 Solutions

p 348, \#10 The keys to this exercise are the following.
Lemma 1. Let V be a vector space over a field F. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set in V and $w \notin\left\langle v_{1}, \ldots, v_{n}\right\rangle$ then $\left\{v_{1}, \ldots, v_{n}, w\right\}$ is linearly independent as well.

Proof. Let $a_{1}, \ldots, a_{n}, b \in F$ so that $a_{1} v_{1}+\cdots+a_{n} v_{n}+b w=0$. If $b \neq 0$ then we have

$$
w=\left(-b^{-1} a_{1}\right) v_{1}+\cdots+\left(-b^{-1} a_{n}\right) v_{n} \in\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

which is a contradiction. It follows that $b=0$ and so $0=a_{1} v_{1}+\cdots+a_{n} v_{n}+b w=a_{1} v_{1}+$ $\cdots+a_{n} v_{n}$, which implies, via the linear independence of v_{1}, \ldots, v_{n}, that $a_{1}=\cdots=a_{n}=0$. That is, the only linear combination of v_{1}, \ldots, v_{n}, w that equals 0 is the trivial combination. Hence, $\left\{v_{1}, \ldots, v_{n}, w\right\}$ is linearly independent.

Lemma 2. Let V be a vector space over a field F. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and $\left\{w_{1}, \ldots, w_{m}\right\}$ is a linearly independent set in V then $m \leq n$.

Proof. The proof of Theorem 19.1 can be used, word for word.
Now let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set of linearly independent vectors in a finite dimensional vector space V. If $\langle S\rangle=V$ then S is a basis for V and we are finished. Otherwise we can find a vector $w_{1} \in V, w_{1} \notin\langle S\rangle$ and according to the first lemma $S_{1}=S \cup\left\{w_{1}\right\}$ is linearly independent in V. If $\left\langle S_{1}\right\rangle=V$ then S_{1} is a basis and we are finished. Otherwise, we can repeat the steps above to create a linearly independent set $S_{2}=S \cup\left\{w_{1}, w_{2}\right\}$. We continue building linearly independent sets S_{i} in V this way. This process cannot continue indefinitely since the second lemma gives an upper bound on the size of linearly independent sets in V. Thus, there must be an m so that $S_{m}=S \cup\left\{w_{1}, \ldots, w_{m}\right\}$ actually spans V and therefore is a basis.
p 348, \#20 Let U be a proper subspace of V with basis $\left\{v_{1}, \ldots, v_{m}\right\}$. Since U is proper, $\left\{v_{1}, \ldots, v_{m}\right\}$ cannot be a basis for V. According to exercise 10 , then, there are vectors $w_{1}, w_{2}, \ldots, w_{n}(n \geq 1)$ so that $\left\{v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}\right\}$ is a basis for V. But then

$$
\operatorname{dim} U=m<m+n=\operatorname{dim} V
$$

as claimed.
$\mathbf{p} 349, \# \mathbf{2 2}$ Let V be a vector space of dimension n over \mathbb{Z}_{p} with basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then every element of V can be written in the form $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}$ for some unique scalars $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}_{p}$. Because there are exactly p choices for each a_{i} and different scalars result in different elements of V, we conclude immediately that there are p^{n} elements in V.
p 365, \#4 We see that in \mathbb{C} we have

$$
x^{4}=\left(x^{2}-i\right)\left(x^{2}+i\right)=(x-\sqrt{i})(x+\sqrt{i})(x-i \sqrt{i})(x+i \sqrt{i})
$$

so that the splitting field for $x^{4}+1$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{i}, i \sqrt{i})$. However, since $i \in \mathbb{Q}(\sqrt{i})$, the splitting field can be written more simply as $\mathbb{Q}(\sqrt{i})$.
p 365, \#8 Since $f(x)=x^{3}+x+1$ has no zeros in \mathbb{Z}_{2} it is irreducible over this field. Therefore, if a is a root of $f(x)$ then the set $\left\{1, a, a^{2}\right\}$ is a basis for $\mathbb{Z}_{2}(a)$ over \mathbb{Z}_{2}. It follows that $\mathbb{Z}_{2}(a)$ has exactly 8 elements: $0,1, a, a^{2}, 1+a, 1+a^{2}, a+a^{2}, 1+a+a^{2}$. Using the fact that $a^{3}+a+1=0$ the multiplication table for $\mathbb{Z}_{2}(a)$ is as follows.

	0	1	a	a^{2}	$1+a$	$1+a^{2}$	$a+a^{2}$	$1+a+a^{2}$
0	0	0	0	0	0	0	0	0
1	0	1	a	a^{2}	$1+a$	$1+a^{2}$	$a+a^{2}$	$1+a+a^{2}$
a	0	a	a^{2}	$1+a$	$a+a^{2}$	1	$1+a+a^{2}$	$1+a^{2}$
a^{2}	0	a^{2}	$1+a$	$a+a^{2}$	$1+a+a^{2}$	a	$1+a^{2}$	1
$1+a$	0	$1+a$	$a+a^{2}$	$1+a+a^{2}$	$1+a^{2}$	a^{2}	1	a
$1+a^{2}$	0	$1+a^{2}$	1	a	a^{2}	$1+a+a^{2}$	$1+a$	$a+a^{2}$
$a+a^{2}$	0	$a+a^{2}$	$1+a+a^{2}$	$1+a^{2}$	1	$1+a$	a	a^{2}
$1+a+a^{2}$	0	$1+a+a^{2}$	$1+a^{2}$	1	a	$a+a^{2}$	a^{2}	$1+a$

p 366, $\# 10$ Let $f(x)=x^{3}+x+1$. Then, since we are in characteristic 2 and $f(a)=$ $a^{3}+a+1=0$,

$$
\begin{aligned}
f\left(a^{2}\right) & =a^{6}+a^{2}+1 \\
& =\left(a^{3}+a\right)^{2}+1 \\
& =1^{2}+1 \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(a^{2}+a\right) & =\left(a^{2}+a\right)^{3}+\left(a^{2}+a\right)+1 \\
& =\left(a^{2}+a\right) a+a^{2}+a+1 \\
& =a^{3}+a^{2}+a^{2}+a+1 \\
& =a^{3}+a+1 \\
& =0 .
\end{aligned}
$$

p 366, \#16 If $f(x)=x^{4}+x+1$ and $\beta \in E / \mathbb{Z}_{2}$ is a root of $f(x)$ then, since we are working
in characteristic 2,

$$
\begin{aligned}
f(\beta+1) & =(\beta+1)^{4}+(\beta+1)+1 \\
& =\beta^{4}+1+\beta \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\beta^{2}\right) & =\left(\beta^{2}\right)^{4}+\beta^{2}+1 \\
& =\left(\beta^{4}\right)^{2}+\beta^{2}+1 \\
& =(\beta+1)^{2}+\beta^{2}+1 \\
& =\beta^{2}+1+\beta^{2}+1 \\
& =0 .
\end{aligned}
$$

However, this reasoning applies equally well to any root of $f(x)$. Thus, since β^{2} is a root, so too is $\beta^{2}+1$. Finally, since $f(x)$ is irreducible of degree 4 over \mathbb{Z}_{2}, the elements $\beta, \beta+$ $1, \beta^{2}, \beta^{2}+1$ are all distinct in $\mathbb{Z}_{2}(\beta) \subset E$. It follows that

$$
f(x)=(x-\beta)(x-(\beta+1))\left(x-\beta^{2}\right)\left(x-\left(\beta^{2}+1\right)\right)
$$

over E.
p 366, $\# \mathbf{2 2}$ If $f(x), g(x) \in F[x]$ are relatively prime then we know from previous work that there exist $r(x), s(x) \in F[x]$ so that $r(x) f(x)+s(x) g(x)=1$. Let $c(x)$ be any common divisor of $f(x)$ and $g(x)$ in $K[x]$. Then there exist $\widehat{f}(x), \widehat{g}(x) \in K[x]$ so that $f(x)=c(x) \widehat{f}(x)$ and $g(x)=c(x) \widehat{g}(x)$. Then we have

$$
1=r(x) f(x)+s(x) g(x)=c(x)(r(x) \widehat{f}(x)+s(x) \widehat{g}(x))
$$

which means that $c(x)$ is a unit in $K[x]$, i.e. $\operatorname{deg} c(x)=0$. Since $c(x)$ was an arbitrary common divisor of $f(x)$ and $g(x)$ in $K[x]$, we conclude that $f(x)$ and $g(x)$ have no common divisors in $K[x]$ of positive degree. That is, $f(x)$ and $g(x)$ are relatively prime in $K[x]$.

