
Homework #11 Solutions

p 348, #12 Since π3 ∈ F , π is a root of the polynomial x3 − π3 ∈ F [x]. This polynomial is
irreducible over F since the only possible root in F would be π itself, and it is easy to show
that π 6∈ F (if it were, π would be algebraic over Q). Therefore a basis for F (π) over F is
{1, π, π2}.
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for any rational a, b, c. But every element of F can be written in the form above, and so it
must be that φ(α) = α for every α ∈ F . That is, the only automorphism of F is the identity.

p 348, #20 Since a, b, c ∈ F (c) and F (c) is a field, ac + b ∈ F (c). From this it follows
that F (ac + b) ⊂ F (c). Since a, b, ac + b ∈ F (ac + b), a 6= 0 and F (ac + b) is a field,
c = a−1((ac + b) − b) ∈ F (ac + b). This gives F (c) ⊂ F (ac + b). Having established the
necessary containments, we conclude that F (c) = F (ac + b).

p 348, #26 It is straightforward to verify that

x8 − x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1)

over Z2. This is the desired factorization since both x3 +x+1 and x3 +x2 +1 have no zeros
in Z2 and are therefore irreducible over Z2.

p 367, #30 If f(x) = x4 + x + 1 ∈ Z2[x] then f ′(x) = 1. It follows that f(x) and f ′(x)
cannot have common positive degree factors and therefore that f(x) does not have any
multiple roots.

p 367, #32 If f(x) = x21 +2x9 +1 ∈ Z3[x] then f ′(x) = 0 so that f(x) is a common positive
degree factor of both f(x) and f ′(x). It follows that f(x) must have multiple roots.

p 367, #34 Since Z3 has characteristic different from 2, we can apply the quadratic formula
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Therefore, the splitting field of the indicated polynomial is Z3[
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Handout, #1 If f(x) = xpn −x ∈ Zp[x], then the fact that we are working in characteristic
p implies that f ′(x) = −1. Therefore f(x) and f ′(x) cannot have positive degree factors in
common and so f(x) does not have multiple roots.

Handout, #2 Recall that ap = a for all a ∈ Zp. Therefore, if f(x) = anx
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n−1 +
· · ·+ a0 ∈ Zp[x] then, since we are working in characteristic p
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Handout, #3 Let g(x) = xp − x + 1. Let α be a root of g(x) in some extension E of Zp.
Notice first that α 6∈ Zp, since otherwise we would have αp = α and g(α) = 1 6= 0. Now
notice that since we are working in characteristic p, α + 1 is also a root of g(x):

g(α + 1) = (α + 1)p − (α + 1) + 1 = αp + 1− α− 1 + 1 = g(α) = 0.

Furthermore, since α was an arbitrary root of g(x) we can apply this result to conclude that,
in fact, α, α + 1, α + 2, . . . , α + p− 1 are all distinct roots of g(x). Since deg g(x) = p these
must indeed be all of the roots of g(x).

Now assume that g(x) is reducible over Zp. Then g(x) = f(x)h(x) for some f(x), g(x) ∈
Zp[x] with 1 ≤ deg f(x) ≤ p − 1. It follows that the roots of f(x) must be a nonempty
proper subset of {α, α + 1, α + 2, . . . , α + p− 1}. Hence, in E[x] we may factor f(x) as

f(x) = (x− (α + i1))(x− (α + i2)) · · · (x− (α + in))

where each ij ∈ Zp. The coefficient of xn−1 in the polynomial on the right is −nα− (i1 + i2 +
· · · in) and since f(x) ∈ Zp[x], this coefficient must belong to Zp. Since i1 + i2 + · · ·+ in ∈ Zp,



it follows that nα ∈ Zp. But n = deg f(x) and so 1 ≤ n ≤ p − 1, i.e. n is a unit in Zp.
We conclude that α ∈ Zp, which, according to our work in the preceding paragraph, is a
contradiction. This means that g(x) must actually be irreducible over Zp.


