Homework #11 Solutions

p 348, #12 Since $\pi^3 \in F$, π is a root of the polynomial $x^3 - \pi^3 \in F[x]$. This polynomial is irreducible over F since the only possible root in F would be π itself, and it is easy to show that $\pi \notin F$ (if it were, π would be algebraic over \mathbb{Q}). Therefore a basis for $F(\pi)$ over F is $\{1, \pi, \pi^2\}$.

p 348, #14 Let $F = \mathbb{Q}(\sqrt[3]{5}) = \{a + b\sqrt[3]{5} + c(\sqrt[3]{5})^2 \mid a, b, c \in \mathbb{Q}\}$ and $\phi : F \to F$ be an automorphism. Arguing as we have several times before, we can show that $\phi(r) = r$ for all $r \in \mathbb{Q}$. It follows that $5 = \phi(5) = \phi((\sqrt[3]{5})^3) = \phi(\sqrt[3]{5})^3$. Since $\phi(\sqrt[3]{5}) \in F \subset \mathbb{R}$, we can therefore conclude that $\phi(\sqrt[3]{5}) = \sqrt[3]{5}$. Finally, this means that

$$\phi(a+b\sqrt[3]{5}+c(\sqrt[3]{5})^2) = \phi(a)+\phi(b)\phi(\sqrt[3]{5})+\phi(c)\phi(\sqrt[3]{5})^2$$

= $a+b\sqrt[3]{5}+c(\sqrt[3]{5})^2$

for any rational a, b, c. But every element of F can be written in the form above, and so it must be that $\phi(\alpha) = \alpha$ for every $\alpha \in F$. That is, the only automorphism of F is the identity.

p 348, #20 Since $a, b, c \in F(c)$ and F(c) is a field, $ac + b \in F(c)$. From this it follows that $F(ac + b) \subset F(c)$. Since $a, b, ac + b \in F(ac + b)$, $a \neq 0$ and F(ac + b) is a field, $c = a^{-1}((ac + b) - b) \in F(ac + b)$. This gives $F(c) \subset F(ac + b)$. Having established the necessary containments, we conclude that F(c) = F(ac + b).

p 348, #26 It is straightforward to verify that

$$x^{8} - x = x(x+1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

over \mathbb{Z}_2 . This is the desired factorization since both $x^3 + x + 1$ and $x^3 + x^2 + 1$ have no zeros in \mathbb{Z}_2 and are therefore irreducible over \mathbb{Z}_2 .

p 367, #30 If $f(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$ then f'(x) = 1. It follows that f(x) and f'(x) cannot have common positive degree factors and therefore that f(x) does not have any multiple roots.

p 367, #32 If $f(x) = x^{21} + 2x^9 + 1 \in \mathbb{Z}_3[x]$ then f'(x) = 0 so that f(x) is a common positive degree factor of both f(x) and f'(x). It follows that f(x) must have multiple roots.

p 367, #34 Since \mathbb{Z}_3 has characteristic different from 2, we can apply the quadratic formula

to conclude that the roots of $x^2 + x + 2$ are

$$\frac{-1 \pm \sqrt{-7}}{2} = 2(-1 \pm \sqrt{2}) = 1 \pm 2\sqrt{2} = 1 \pm \sqrt{2}$$

and the roots of $x^2 + 2x + 2$ are

$$\frac{-2 \pm \sqrt{-4}}{2} = 2(-2 \pm \sqrt{2}) = 2 \pm 2\sqrt{2} = 2 \pm \sqrt{2}.$$

Therefore, the splitting field of the indicated polynomial is $\mathbb{Z}_3[\sqrt{2}]$. Since we have the 4 roots of our polynomial we know that it may be factored over this field as

$$(x - (1 + \sqrt{2}))(x - (1 - \sqrt{2}))(x - (2 + \sqrt{2}))(x - (2 - \sqrt{2})).$$

Handout, #1 If $f(x) = x^{p^n} - x \in \mathbb{Z}_p[x]$, then the fact that we are working in characteristic p implies that f'(x) = -1. Therefore f(x) and f'(x) cannot have positive degree factors in common and so f(x) does not have multiple roots.

Handout, #2 Recall that $a^p = a$ for all $a \in \mathbb{Z}_p$. Therefore, if $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}_p[x]$ then, since we are working in characteristic p

$$(f(x))^{p} = (a_{n}x^{n})^{p} + (a_{n-1}x^{n-1})^{p} + \dots + a_{0}^{p}$$

$$= a_{n}^{p}x^{np} + a_{n-1}^{p}x^{(n-1)p} + \dots + a_{0}^{p}$$

$$= a_{n}(x^{p})^{n} + a_{n-1}(x^{p})^{n-1} + \dots + a_{0}$$

$$= f(x^{p}).$$

Handout, #3 Let $g(x) = x^p - x + 1$. Let α be a root of g(x) in some extension E of \mathbb{Z}_p . Notice first that $\alpha \notin \mathbb{Z}_p$, since otherwise we would have $\alpha^p = \alpha$ and $g(\alpha) = 1 \neq 0$. Now notice that since we are working in characteristic $p, \alpha + 1$ is also a root of g(x):

$$g(\alpha + 1) = (\alpha + 1)^{p} - (\alpha + 1) + 1 = \alpha^{p} + 1 - \alpha - 1 + 1 = g(\alpha) = 0.$$

Furthermore, since α was an arbitrary root of g(x) we can apply this result to conclude that, in fact, $\alpha, \alpha + 1, \alpha + 2, \ldots, \alpha + p - 1$ are all distinct roots of g(x). Since deg g(x) = p these must indeed be all of the roots of g(x).

Now assume that g(x) is reducible over \mathbb{Z}_p . Then g(x) = f(x)h(x) for some $f(x), g(x) \in \mathbb{Z}_p[x]$ with $1 \leq \deg f(x) \leq p-1$. It follows that the roots of f(x) must be a nonempty proper subset of $\{\alpha, \alpha + 1, \alpha + 2, \dots, \alpha + p - 1\}$. Hence, in E[x] we may factor f(x) as

$$f(x) = (x - (\alpha + i_1))(x - (\alpha + i_2)) \cdots (x - (\alpha + i_n))$$

where each $i_j \in \mathbb{Z}_p$. The coefficient of x^{n-1} in the polynomial on the right is $-n\alpha - (i_1 + i_2 + \cdots + i_n)$ and since $f(x) \in \mathbb{Z}_p[x]$, this coefficient must belong to \mathbb{Z}_p . Since $i_1 + i_2 + \cdots + i_n \in \mathbb{Z}_p$,

it follows that $n\alpha \in \mathbb{Z}_p$. But $n = \deg f(x)$ and so $1 \leq n \leq p-1$, i.e. n is a unit in \mathbb{Z}_p . We conclude that $\alpha \in \mathbb{Z}_p$, which, according to our work in the preceding paragraph, is a contradiction. This means that g(x) must actually be irreducible over \mathbb{Z}_p .