Homework \#11 Solutions

p 348, \#12 Since $\pi^{3} \in F, \pi$ is a root of the polynomial $x^{3}-\pi^{3} \in F[x]$. This polynomial is irreducible over F since the only possible root in F would be π itself, and it is easy to show that $\pi \notin F$ (if it were, π would be algebraic over \mathbb{Q}). Therefore a basis for $F(\pi)$ over F is $\left\{1, \pi, \pi^{2}\right\}$.
p 348, $\# \mathbf{1 4}$ Let $F=\mathbb{Q}(\sqrt[3]{5})=\left\{a+b \sqrt[3]{5}+c(\sqrt[3]{5})^{2} \mid a, b, c \in \mathbb{Q}\right\}$ and $\phi: F \rightarrow F$ be an automorphism. Arguing as we have several times before, we can show that $\phi(r)=r$ for all $r \in \mathbb{Q}$. It follows that $5=\phi(5)=\phi\left((\sqrt[3]{5})^{3}\right)=\phi(\sqrt[3]{5})^{3}$. Since $\phi(\sqrt[3]{5}) \in F \subset \mathbb{R}$, we can therefore conclude that $\phi(\sqrt[3]{5})=\sqrt[3]{5}$. Finally, this means that

$$
\begin{aligned}
\phi\left(a+b \sqrt[3]{5}+c(\sqrt[3]{5})^{2}\right) & =\phi(a)+\phi(b) \phi(\sqrt[3]{5})+\phi(c) \phi(\sqrt[3]{5})^{2} \\
& =a+b \sqrt[3]{5}+c(\sqrt[3]{5})^{2}
\end{aligned}
$$

for any rational a, b, c. But every element of F can be written in the form above, and so it must be that $\phi(\alpha)=\alpha$ for every $\alpha \in F$. That is, the only automorphism of F is the identity.
p 348, $\# \mathbf{2 0}$ Since $a, b, c \in F(c)$ and $F(c)$ is a field, $a c+b \in F(c)$. From this it follows that $F(a c+b) \subset F(c)$. Since $a, b, a c+b \in F(a c+b), a \neq 0$ and $F(a c+b)$ is a field, $c=a^{-1}((a c+b)-b) \in F(a c+b)$. This gives $F(c) \subset F(a c+b)$. Having established the necessary containments, we conclude that $F(c)=F(a c+b)$.
p 348, \#26 It is straightforward to verify that

$$
x^{8}-x=x(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)
$$

over \mathbb{Z}_{2}. This is the desired factorization since both $x^{3}+x+1$ and $x^{3}+x^{2}+1$ have no zeros in \mathbb{Z}_{2} and are therefore irreducible over \mathbb{Z}_{2}.
p $367, \# 30$ If $f(x)=x^{4}+x+1 \in \mathbb{Z}_{2}[x]$ then $f^{\prime}(x)=1$. It follows that $f(x)$ and $f^{\prime}(x)$ cannot have common positive degree factors and therefore that $f(x)$ does not have any multiple roots.
p 367, \#32 If $f(x)=x^{21}+2 x^{9}+1 \in \mathbb{Z}_{3}[x]$ then $f^{\prime}(x)=0$ so that $f(x)$ is a common positive degree factor of both $f(x)$ and $f^{\prime}(x)$. It follows that $f(x)$ must have multiple roots.
p 367, $\# 34$ Since \mathbb{Z}_{3} has characteristic different from 2, we can apply the quadratic formula
to conclude that the roots of $x^{2}+x+2$ are

$$
\frac{-1 \pm \sqrt{-7}}{2}=2(-1 \pm \sqrt{2})=1 \pm 2 \sqrt{2}=1 \pm \sqrt{2}
$$

and the roots of $x^{2}+2 x+2$ are

$$
\frac{-2 \pm \sqrt{-4}}{2}=2(-2 \pm \sqrt{2})=2 \pm 2 \sqrt{2}=2 \pm \sqrt{2}
$$

Therefore, the splitting field of the indicated polynomial is $\mathbb{Z}_{3}[\sqrt{2}]$. Since we have the 4 roots of our polynomial we know that it may be factored over this field as

$$
(x-(1+\sqrt{2}))(x-(1-\sqrt{2}))(x-(2+\sqrt{2}))(x-(2-\sqrt{2})) .
$$

Handout, \#1 If $f(x)=x^{p^{n}}-x \in \mathbb{Z}_{p}[x]$, then the fact that we are working in characteristic p implies that $f^{\prime}(x)=-1$. Therefore $f(x)$ and $f^{\prime}(x)$ cannot have positive degree factors in common and so $f(x)$ does not have multiple roots.

Handout, $\# \mathbf{2}$ Recall that $a^{p}=a$ for all $a \in \mathbb{Z}_{p}$. Therefore, if $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+$ $\cdots+a_{0} \in \mathbb{Z}_{p}[x]$ then, since we are working in characteristic p

$$
\begin{aligned}
(f(x))^{p} & =\left(a_{n} x^{n}\right)^{p}+\left(a_{n-1} x^{n-1}\right)^{p}+\cdots+a_{0}^{p} \\
& =a_{n}^{p} x^{n p}+a_{n-1}^{p} x^{(n-1) p}+\cdots+a_{0}^{p} \\
& =a_{n}\left(x^{p}\right)^{n}+a_{n-1}\left(x^{p}\right)^{n-1}+\cdots+a_{0} \\
& =f\left(x^{p}\right) .
\end{aligned}
$$

Handout, \#3 Let $g(x)=x^{p}-x+1$. Let α be a root of $g(x)$ in some extension E of \mathbb{Z}_{p}. Notice first that $\alpha \notin \mathbb{Z}_{p}$, since otherwise we would have $\alpha^{p}=\alpha$ and $g(\alpha)=1 \neq 0$. Now notice that since we are working in characteristic $p, \alpha+1$ is also a root of $g(x)$:

$$
g(\alpha+1)=(\alpha+1)^{p}-(\alpha+1)+1=\alpha^{p}+1-\alpha-1+1=g(\alpha)=0 .
$$

Furthermore, since α was an arbitrary root of $g(x)$ we can apply this result to conclude that, in fact, $\alpha, \alpha+1, \alpha+2, \ldots, \alpha+p-1$ are all distinct roots of $g(x)$. Since $\operatorname{deg} g(x)=p$ these must indeed be all of the roots of $g(x)$.

Now assume that $g(x)$ is reducible over \mathbb{Z}_{p}. Then $g(x)=f(x) h(x)$ for some $f(x), g(x) \in$ $\mathbb{Z}_{p}[x]$ with $1 \leq \operatorname{deg} f(x) \leq p-1$. It follows that the roots of $f(x)$ must be a nonempty proper subset of $\{\alpha, \alpha+1, \alpha+2, \ldots, \alpha+p-1\}$. Hence, in $E[x]$ we may factor $f(x)$ as

$$
f(x)=\left(x-\left(\alpha+i_{1}\right)\right)\left(x-\left(\alpha+i_{2}\right)\right) \cdots\left(x-\left(\alpha+i_{n}\right)\right)
$$

where each $i_{j} \in \mathbb{Z}_{p}$. The coefficient of x^{n-1} in the polynomial on the right is $-n \alpha-\left(i_{1}+i_{2}+\right.$ $\left.\cdots i_{n}\right)$ and since $f(x) \in \mathbb{Z}_{p}[x]$, this coefficient must belong to \mathbb{Z}_{p}. Since $i_{1}+i_{2}+\cdots+i_{n} \in \mathbb{Z}_{p}$,
it follows that $n \alpha \in \mathbb{Z}_{p}$. But $n=\operatorname{deg} f(x)$ and so $1 \leq n \leq p-1$, i.e. n is a unit in \mathbb{Z}_{p}. We conclude that $\alpha \in \mathbb{Z}_{p}$, which, according to our work in the preceding paragraph, is a contradiction. This means that $g(x)$ must actually be irreducible over \mathbb{Z}_{p}.

