
Homework #12 Solutions

Handout, #1 We induct on the degree of f(x). If deg f(x) = 1 then f(x) has no multiple
roots and we can take g(x) = f(x), n = 0. Now suppose that deg f(x) > 1 and that the
statement holds for all irreducible polynomials with degree strictly less that deg f(x). If f(x)
has no multiple roots then again we may take g(x) = f(x) and n = 0. If f(x) does have
multiple roots then, since f(x) is irreducible, we know that there must exist g0(x) ∈ F [x] so
that f(x) = g0(x

p). The polynomial g0(x) certainly has degree less than that of f(x) and
must also be irreducible (otherwise f(x) would be reducible). The induction hypothesis then
implies that g0(x) = g(xpn

) for some n ≥ 0 and an irreducible g(x) ∈ F [x] with no multiple
roots. But then we have

f(x) = g0(x
p) = g((xp)pn

) = g(xpn+1

)

which shows that the result holds for f(x) as well. It follows, by (strong) induction, that
the statement holds for all irreducible f(x) ∈ F [x].

Handout, #2

a. Since g(x) has no multiple roots, it must be that

g(x) = c(x− b1) · · · (x− bm)

for some nonzero c ∈ F . Therefore

f(x) = g(xpn

) = c(xpn − b1) · · · (xpn − bm).

b. By part (a) we have
0 = f(a) = c(apn − b1) · · · (apn − bm)

which implies apn − bi = 0, or apn
= bi, for some i.

c. Part (b) shows that the assignment a 7→ apn
defines a function from the set of roots of

f(x) in E to the set of roots of g(x) in K. This function is one-to-one since if a and a′

are both roots of f(x) with apn
= (a′)pn

then 0 = apn − (a′)pn
= (a − a′)pn

(since the
characteristic of E is p) so that a = a′. It follows that f(x) has at most m roots. We
claim that this function is also onto, which proves that f(x) has exactly m roots. To
see this, fix a root b of g(x) and let a be a root of xpn − b in some extension of K. Then
apn

= b so that f(a) = g(αpn
) = g(b) = 0. It follows that a must belong to E and since

apn
= b this proves our map is surjective, and we’re finished.

Handout, #3 According to part (c) we can order the roots of f(x) so that (ai)
pn

= bi for
all i. Then, by part (a), we have

f(x) = c(xpn − b1) · · · (xpn − bm)

= c(xpn − apn

1 ) · · · (xpn − apn

m )

= c(x− a1)
pn · · · (x− am)pn



where in the last line we have used the fact that the characteristic of E[x] is the same as
that of E, namely p.

p 378, #10 If a is algebraic over Q then there is a nonzero polynomial f(x) ∈ Q[x] so that
f(a) = 0. Let g(x) = f(x2) ∈ Q[x]. Then g(x) is nonzero and g(

√
a) = f((

√
a)2) = f(a) = 0,

so that
√

a is algebraic over Q as well.

p 378, #18 Choose α ∈ E so that α 6∈ Q. Then [Q(α) : Q] must be greater than 1 and
divide [E : Q] = 2. Hence [Q(α) : Q] = 2. Since 2 = [E : Q] = [E : Q(α)][Q(α) : Q], this
implies [E : Q(α)] = 1 so that E = Q(α). Since α has degree 2 over Q, there is an irreducible
polynomial x2 +ax+b ∈ Q[x] of which α is a root. Then, according to the quadratic formula

α =
−a±

√
a2 − 4b

2
.

Since a, 2 ∈ Q, this implies E = Q(α) = Q(
√

a2 − 4b). Write a2−4b = r/s with r, s ∈ Z, s >

0. Then
√

a2 − 4b =
√

r/s =
√

rs/s2 =
√

rs/s so that now E = Q(
√

a2 − 4b) = Q(
√

rs).
Finally, write rs = q2d where q, d ∈ Z and d > 0 is not divisible by the square of any prime.
Then

√
rs = q

√
d and we have E = Q(

√
rs) = Q(

√
d), as desired.

p 379, #26 Since x3 − 1 = (x − 1)(x2 + x + 1) we see that a3 − 1 = 0. Therefore a3 = 1
and a4 = a. Taking square roots on both sides yields a2 =

√
a. From this it follows that√

a ∈ Q(a) so that Q(
√

a) ⊆ Q(a). Since we obviously have Q(a) ⊆ Q(
√

a) we see that
Q(
√

a) = Q(a).

p 379, #28 Write r = m/n with m, n ∈ Z and n > 0. Suppose that a is a root of
f(x) ∈ Q[x], f(x) 6= 0. Then a1/n is a root of g(x) = f(xn) ∈ Q[x], so that a1/n is
algebraic over Q. From this it follows that Q(a1/n) is an algebraic extension of Q. Since
ar = (a1/n)m ∈ Q(a1/n), we see that ar is algebraic over Q.


