Homework \#12 Solutions

Handout, \#1 We induct on the degree of $f(x)$. If $\operatorname{deg} f(x)=1$ then $f(x)$ has no multiple roots and we can take $g(x)=f(x), n=0$. Now suppose that $\operatorname{deg} f(x)>1$ and that the statement holds for all irreducible polynomials with degree strictly less that $\operatorname{deg} f(x)$. If $f(x)$ has no multiple roots then again we may take $g(x)=f(x)$ and $n=0$. If $f(x)$ does have multiple roots then, since $f(x)$ is irreducible, we know that there must exist $g_{0}(x) \in F[x]$ so that $f(x)=g_{0}\left(x^{p}\right)$. The polynomial $g_{0}(x)$ certainly has degree less than that of $f(x)$ and must also be irreducible (otherwise $f(x)$ would be reducible). The induction hypothesis then implies that $g_{0}(x)=g\left(x^{p^{n}}\right)$ for some $n \geq 0$ and an irreducible $g(x) \in F[x]$ with no multiple roots. But then we have

$$
f(x)=g_{0}\left(x^{p}\right)=g\left(\left(x^{p}\right)^{p^{n}}\right)=g\left(x^{p^{n+1}}\right)
$$

which shows that the result holds for $f(x)$ as well. It follows, by (strong) induction, that the statement holds for all irreducible $f(x) \in F[x]$.

Handout, \#2
a. Since $g(x)$ has no multiple roots, it must be that

$$
g(x)=c\left(x-b_{1}\right) \cdots\left(x-b_{m}\right)
$$

for some nonzero $c \in F$. Therefore

$$
f(x)=g\left(x^{p^{n}}\right)=c\left(x^{p^{n}}-b_{1}\right) \cdots\left(x^{p^{n}}-b_{m}\right) .
$$

b. By part (a) we have

$$
0=f(a)=c\left(a^{p^{n}}-b_{1}\right) \cdots\left(a^{p^{n}}-b_{m}\right)
$$

which implies $a^{p^{n}}-b_{i}=0$, or $a^{p^{n}}=b_{i}$, for some i.
c. Part (b) shows that the assignment $a \mapsto a^{p^{n}}$ defines a function from the set of roots of $f(x)$ in E to the set of roots of $g(x)$ in K. This function is one-to-one since if a and a^{\prime} are both roots of $f(x)$ with $a^{p^{n}}=\left(a^{\prime}\right)^{p^{n}}$ then $0=a^{p^{n}}-\left(a^{\prime}\right)^{p^{n}}=\left(a-a^{\prime}\right)^{p^{n}}$ (since the characteristic of E is p) so that $a=a^{\prime}$. It follows that $f(x)$ has at most m roots. We claim that this function is also onto, which proves that $f(x)$ has exactly m roots. To see this, fix a root b of $g(x)$ and let a be a root of $x^{p^{n}}-b$ in some extension of K. Then $a^{p^{n}}=b$ so that $f(a)=g\left(\alpha^{p^{n}}\right)=g(b)=0$. It follows that a must belong to E and since $a^{p^{n}}=b$ this proves our map is surjective, and we're finished.

Handout, \#3 According to part (c) we can order the roots of $f(x)$ so that $\left(a_{i}\right)^{p^{n}}=b_{i}$ for all i. Then, by part (a), we have

$$
\begin{aligned}
f(x) & =c\left(x^{p^{n}}-b_{1}\right) \cdots\left(x^{p^{n}}-b_{m}\right) \\
& =c\left(x^{p^{n}}-a_{1}^{p^{n}}\right) \cdots\left(x^{p^{n}}-a_{m}^{p^{n}}\right) \\
& =c\left(x-a_{1}\right)^{p^{n}} \cdots\left(x-a_{m}\right)^{p^{n}}
\end{aligned}
$$

where in the last line we have used the fact that the characteristic of $E[x]$ is the same as that of E, namely p.
p 378, \#10 If a is algebraic over \mathbb{Q} then there is a nonzero polynomial $f(x) \in \mathbb{Q}[x]$ so that $f(a)=0$. Let $g(x)=f\left(x^{2}\right) \in Q[x]$. Then $g(x)$ is nonzero and $g(\sqrt{a})=f\left((\sqrt{a})^{2}\right)=f(a)=0$, so that \sqrt{a} is algebraic over \mathbb{Q} as well.
p 378, $\# 18$ Choose $\alpha \in E$ so that $\alpha \notin \mathbb{Q}$. Then $[\mathbb{Q}(\alpha): \mathbb{Q}]$ must be greater than 1 and divide $[E: \mathbb{Q}]=2$. Hence $[Q(\alpha): \mathbb{Q}]=2$. Since $2=[E: \mathbb{Q}]=[E: \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]$, this implies $[E: \mathbb{Q}(\alpha)]=1$ so that $E=\mathbb{Q}(\alpha)$. Since α has degree 2 over \mathbb{Q}, there is an irreducible polynomial $x^{2}+a x+b \in \mathbb{Q}[x]$ of which α is a root. Then, according to the quadratic formula

$$
\alpha=\frac{-a \pm \sqrt{a^{2}-4 b}}{2}
$$

Since $a, 2 \in Q$, this implies $E=\mathbb{Q}(\alpha)=\mathbb{Q}\left(\sqrt{a^{2}-4 b}\right)$. Write $a^{2}-4 b=r / s$ with $r, s \in \mathbb{Z}, s>$ 0. Then $\sqrt{a^{2}-4 b}=\sqrt{r / s}=\sqrt{r s / s^{2}}=\sqrt{r s} / s$ so that now $E=\mathbb{Q}\left(\sqrt{a^{2}-4 b}\right)=\mathbb{Q}(\sqrt{r s})$. Finally, write $r s=q^{2} d$ where $q, d \in \mathbb{Z}$ and $d>0$ is not divisible by the square of any prime. Then $\sqrt{r s}=q \sqrt{d}$ and we have $E=\mathbb{Q}(\sqrt{r s})=\mathbb{Q}(\sqrt{d})$, as desired.
p 379, \#26 Since $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ we see that $a^{3}-1=0$. Therefore $a^{3}=1$ and $a^{4}=a$. Taking square roots on both sides yields $a^{2}=\sqrt{a}$. From this it follows that $\sqrt{a} \in \mathbb{Q}(a)$ so that $\mathbb{Q}(\sqrt{a}) \subseteq \mathbb{Q}(a)$. Since we obviously have $\mathbb{Q}(a) \subseteq \mathbb{Q}(\sqrt{a})$ we see that $\mathbb{Q}(\sqrt{a})=\mathbb{Q}(a)$.
p 379, \#28 Write $r=m / n$ with $m, n \in \mathbb{Z}$ and $n>0$. Suppose that a is a root of $f(x) \in \mathbb{Q}[x], f(x) \neq 0$. Then $a^{1 / n}$ is a root of $g(x)=f\left(x^{n}\right) \in \mathbb{Q}[x]$, so that $a^{1 / n}$ is algebraic over \mathbb{Q}. From this it follows that $\mathbb{Q}\left(a^{1 / n}\right)$ is an algebraic extension of \mathbb{Q}. Since $a^{r}=\left(a^{1 / n}\right)^{m} \in \mathbb{Q}\left(a^{1 / n}\right)$, we see that a^{r} is algebraic over \mathbb{Q}.

