Homework #12 Solutions

Handout, #1 We induct on the degree of f(x). If deg f(x) = 1 then f(x) has no multiple roots and we can take g(x) = f(x), n = 0. Now suppose that deg f(x) > 1 and that the statement holds for all irreducible polynomials with degree strictly less that deg f(x). If f(x)has no multiple roots then again we may take g(x) = f(x) and n = 0. If f(x) does have multiple roots then, since f(x) is irreducible, we know that there must exist $g_0(x) \in F[x]$ so that $f(x) = g_0(x^p)$. The polynomial $g_0(x)$ certainly has degree less than that of f(x) and must also be irreducible (otherwise f(x) would be reducible). The induction hypothesis then implies that $g_0(x) = g(x^{p^n})$ for some $n \ge 0$ and an irreducible $g(x) \in F[x]$ with no multiple roots. But then we have

$$f(x) = g_0(x^p) = g((x^p)^{p^n}) = g(x^{p^{n+1}})$$

which shows that the result holds for f(x) as well. It follows, by (strong) induction, that the statement holds for all irreducible $f(x) \in F[x]$.

Handout, #2

a. Since g(x) has no multiple roots, it must be that

$$g(x) = c(x - b_1) \cdots (x - b_m)$$

for some nonzero $c \in F$. Therefore

$$f(x) = g(x^{p^n}) = c(x^{p^n} - b_1) \cdots (x^{p^n} - b_m).$$

b. By part (a) we have

$$0 = f(a) = c(a^{p^n} - b_1) \cdots (a^{p^n} - b_m)$$

which implies $a^{p^n} - b_i = 0$, or $a^{p^n} = b_i$, for some *i*.

c. Part (b) shows that the assignment $a \mapsto a^{p^n}$ defines a function from the set of roots of f(x) in E to the set of roots of g(x) in K. This function is one-to-one since if a and a' are both roots of f(x) with $a^{p^n} = (a')^{p^n}$ then $0 = a^{p^n} - (a')^{p^n} = (a - a')^{p^n}$ (since the characteristic of E is p) so that a = a'. It follows that f(x) has at most m roots. We claim that this function is also onto, which proves that f(x) has exactly m roots. To see this, fix a root b of g(x) and let a be a root of $x^{p^n} - b$ in some extension of K. Then $a^{p^n} = b$ so that $f(a) = g(\alpha^{p^n}) = g(b) = 0$. It follows that a must belong to E and since $a^{p^n} = b$ this proves our map is surjective, and we're finished.

Handout, #3 According to part (c) we can order the roots of f(x) so that $(a_i)^{p^n} = b_i$ for all *i*. Then, by part (a), we have

$$f(x) = c(x^{p^n} - b_1) \cdots (x^{p^n} - b_m) = c(x^{p^n} - a_1^{p^n}) \cdots (x^{p^n} - a_m^{p^n}) = c(x - a_1)^{p^n} \cdots (x - a_m)^{p^n}$$

where in the last line we have used the fact that the characteristic of E[x] is the same as that of E, namely p.

p 378, #10 If a is algebraic over \mathbb{Q} then there is a nonzero polynomial $f(x) \in \mathbb{Q}[x]$ so that f(a) = 0. Let $g(x) = f(x^2) \in Q[x]$. Then g(x) is nonzero and $g(\sqrt{a}) = f((\sqrt{a})^2) = f(a) = 0$, so that \sqrt{a} is algebraic over \mathbb{Q} as well.

p 378, #18 Choose $\alpha \in E$ so that $\alpha \notin \mathbb{Q}$. Then $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ must be greater than 1 and divide $[E : \mathbb{Q}] = 2$. Hence $[Q(\alpha) : \mathbb{Q}] = 2$. Since $2 = [E : \mathbb{Q}] = [E : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}]$, this implies $[E : \mathbb{Q}(\alpha)] = 1$ so that $E = \mathbb{Q}(\alpha)$. Since α has degree 2 over \mathbb{Q} , there is an irreducible polynomial $x^2 + ax + b \in \mathbb{Q}[x]$ of which α is a root. Then, according to the quadratic formula

$$\alpha = \frac{-a \pm \sqrt{a^2 - 4b}}{2}.$$

Since $a, 2 \in Q$, this implies $E = \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{a^2 - 4b})$. Write $a^2 - 4b = r/s$ with $r, s \in \mathbb{Z}, s > 0$. Then $\sqrt{a^2 - 4b} = \sqrt{r/s} = \sqrt{rs/s^2} = \sqrt{rs/s}$ so that now $E = \mathbb{Q}(\sqrt{a^2 - 4b}) = \mathbb{Q}(\sqrt{rs})$. Finally, write $rs = q^2d$ where $q, d \in \mathbb{Z}$ and d > 0 is not divisible by the square of any prime. Then $\sqrt{rs} = q\sqrt{d}$ and we have $E = \mathbb{Q}(\sqrt{rs}) = \mathbb{Q}(\sqrt{d})$, as desired.

p 379, #26 Since $x^3 - 1 = (x - 1)(x^2 + x + 1)$ we see that $a^3 - 1 = 0$. Therefore $a^3 = 1$ and $a^4 = a$. Taking square roots on both sides yields $a^2 = \sqrt{a}$. From this it follows that $\sqrt{a} \in \mathbb{Q}(a)$ so that $\mathbb{Q}(\sqrt{a}) \subseteq \mathbb{Q}(a)$. Since we obviously have $\mathbb{Q}(a) \subseteq \mathbb{Q}(\sqrt{a})$ we see that $\mathbb{Q}(\sqrt{a}) = \mathbb{Q}(a)$.

p 379, #28 Write r = m/n with $m, n \in \mathbb{Z}$ and n > 0. Suppose that a is a root of $f(x) \in \mathbb{Q}[x], f(x) \neq 0$. Then $a^{1/n}$ is a root of $g(x) = f(x^n) \in \mathbb{Q}[x]$, so that $a^{1/n}$ is algebraic over \mathbb{Q} . From this it follows that $\mathbb{Q}(a^{1/n})$ is an algebraic extension of \mathbb{Q} . Since $a^r = (a^{1/n})^m \in \mathbb{Q}(a^{1/n})$, we see that a^r is algebraic over \mathbb{Q} .