
Homework #13 Solutions

p 377, #6 Let m = deg f(x), n = deg g(x) and let b be a root of g(x) in some extension of
F (a). We start by observing that, since f(x) and g(x) are irreducible over F , we have

[F (a, b) : F ] = [F (a, b) : F (a)][F (a) : F ] = [F (a, b) : F (a)]m

[F (a, b) : F ] = [F (b, a) : F (b)][F (b) : F ] = [F (b, a) : F (b)]n

so that [F (a, b) : F ] is divisible by both m and n. Since m and n are relatively prime, this
implies that [F (a, b) : F ] is actually divisible by mn.

Since g(b) = 0 and g(x) ∈ F (a)[x], the minimal polynomial ĝ(x) of b over F (a) divides
g(x). This means that [F (a, b) : F (a)] = deg ĝ(x) ≤ deg g(x) = n. Our computations above
then show that [F (a, b) : F ] = [F (a, b) : F (a)]m ≤ nm. Since mn divides [F (a, b) : F ], it
must actually be the case that [F (a, b) : F ] = mn. Comparing this with [F (a, b) : F ] =
[F (a, b) : F (a)]m, we immediately conclude that deg ĝ(x) = [F (a, b) : F (a)] = n = deg g(x).
Since ĝ(x) divides g(x) we find that g(x) and ĝ(x) must differ only by a constant in F (a).
Since ĝ(x) is irreducible over F (a), the same must therefore be true for g(x).
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p 378, #16 Let α = 3
√

2 + 3
√

4. Then α3 = 6 + 6 3
√
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4 = 6 + 6α so that α is a root of
f(x) = x3 − 6x− 6 ∈ Q[x]. Since this polynomial is monic and irreducible (by Eisenstein’s
criterion with the prime 2), it must be the minimal polynomial for α.

p 378, #20 It was proven in class that if a1, . . . , an are algebraic over F then E =
F (a1, . . . , an) has finite degree over F . Therefore we only prove the converse. Let [E :
F ] = n < ∞. Then there exist a1, . . . , an ∈ E that form a basis for E over F . Since E is of
finite degree over F we know that each ai is algebraic over F , and because the ai’s form a
basis for E over F we clearly have E = F (a1, . . . , an).



p 378, #22 We have the following inclusion diagram:

F (a)

F (f(a))

F

Since a is a root of f(x)− f(a) ∈ F (f(a))[x], F (a) is algebraic over F (f(a)). Since f(a) is
algebraic over F , F (f(a)) is algebraic over F . It follows that F (a) is algebraic over F and
hence that a is algebraic over F .

p 388, #6 Since the two given polynomials have degree two and are irreducible over Z3,
both rings are fields with nine elements and are therefore isomorphic to GF(9), and hence
to each other.

p 388, #8 The finite fields that contain GF(p5) are those of the form GF(p5k), where
k ∈ Z+. In order for GF(p5) to be a proper subfield we need k ≥ 2 and in order for GF(p5)
to be the largest subfield we need 5 to be the largest proper divisor of 5k. This is the case
only when k = 2, 3, 5 and so the subfields in question are GF(p10), GF(p15), and GF(p25).

p 388, #20 Since g(x) divides xpn − x and every element in GF(pn) is a root of the latter,
we see that GF(pn) contains every root of g(x). Let a be any such root in GF. Then we
have

n = [GF(pn) : GF(p)]

= [GF(pn) : GF(p)(a)] [GF(p)(a) : GF(p)]

= [GF(pn) : GF(p)(a)] deg g(x)

since the irreducibility of g(x) over GF(p) implies [GF(p)(a) : GF(p)] = deg g(x). This is
what we were asked to show.



p 388, #22 For any prime p we have
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p 389, #24 Let E be a splitting field for p(x) over Zp. Since E is obtained from Zp by
adjoining finitely many algebraic elements (i.e. the roots of p(x)), we know that E is a finite
extension of Zp. Therefore, E is isomorphic to GF (pn) for some n. Since every element of
GF (pn) is a root of the polynomial xpn − x, the same is true of the elements of E. Since E
contains the roots of p(x), the roots of p(x) must also be roots of xpn − x. As none of the
roots of p(x) are repeated, this implies that p(x) divides xpn − x.


