p 377, #6 Let $m = \deg f(x)$, $n = \deg g(x)$ and let b be a root of g(x) in some extension of F(a). We start by observing that, since f(x) and g(x) are irreducible over F, we have

$$[F(a,b):F] = [F(a,b):F(a)][F(a):F] = [F(a,b):F(a)]m [F(a,b):F] = [F(b,a):F(b)][F(b):F] = [F(b,a):F(b)]n$$

so that [F(a, b) : F] is divisible by both m and n. Since m and n are relatively prime, this implies that [F(a, b) : F] is actually divisible by mn.

Since g(b) = 0 and $g(x) \in F(a)[x]$, the minimal polynomial $\widehat{g}(x)$ of b over F(a) divides g(x). This means that $[F(a,b):F(a)] = \deg \widehat{g}(x) \leq \deg g(x) = n$. Our computations above then show that $[F(a,b):F] = [F(a,b):F(a)]m \leq nm$. Since mn divides [F(a,b):F], it must actually be the case that [F(a,b):F] = mn. Comparing this with [F(a,b):F] = [F(a,b):F(a)]m, we immediately conclude that $\deg \widehat{g}(x) = [F(a,b):F(a)] = n = \deg g(x)$. Since $\widehat{g}(x)$ divides g(x) we find that g(x) and $\widehat{g}(x)$ must differ only by a constant in F(a). Since $\widehat{g}(x)$ is irreducible over F(a), the same must therefore be true for g(x).

p 378, #8 According to Example 21.6 of the text, $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ has degree 4 over \mathbb{Q} . Since $\mathbb{Q}(\sqrt{15})$ has degree 2 over \mathbb{Q} , we must have $[\mathbb{Q}(\sqrt{3} + \sqrt{5}) : \mathbb{Q}(\sqrt{15})] = 2$ from which it follows that $\{1, \sqrt{3} + \sqrt{5}\}$ is a basis for $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ over $\mathbb{Q}(\sqrt{15})$.

Since $\sqrt{2} = \sqrt[4]{2}^2 \in \mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2})$, we conclude that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2}) = \mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2})$. Moreover, since $x^3 - 2, x^4 - 2$ are irreducible over \mathbb{Q} of relatively prime degree, exercise 6 implies that $x^4 - 2$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$. Thus $[\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2}) : \mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 4 \cdot 3 = 12$ and $\{1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}\}$ is a basis for $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2})$ over $\mathbb{Q}(\sqrt[3]{2})$. Since $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis for $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} , we know that we can obtain a basis for $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2})$ over \mathbb{Q} by multiplying the previous two bases together. Therefore, a basis for our extension over \mathbb{Q} is

$$\{1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}, \sqrt[3]{2}, \sqrt[3]{2}\sqrt[4]{2}, \sqrt[3]{2}\sqrt[4]{4}, \sqrt[3]{2}\sqrt[4]{8}, \sqrt[3]{4}, \sqrt[3]{4}\sqrt[4]{2}, \sqrt[3]{4}\sqrt[4]{4}, \sqrt[3]{4}\sqrt[4]{8}\}.$$

p 378, #16 Let $\alpha = \sqrt[3]{2} + \sqrt[3]{4}$. Then $\alpha^3 = 6 + 6\sqrt[3]{2} + 6\sqrt[3]{4} = 6 + 6\alpha$ so that α is a root of $f(x) = x^3 - 6x - 6 \in \mathbb{Q}[x]$. Since this polynomial is monic and irreducible (by Eisenstein's criterion with the prime 2), it must be the minimal polynomial for α .

p 378, #20 It was proven in class that if a_1, \ldots, a_n are algebraic over F then $E = F(a_1, \ldots, a_n)$ has finite degree over F. Therefore we only prove the converse. Let $[E : F] = n < \infty$. Then there exist $a_1, \ldots, a_n \in E$ that form a basis for E over F. Since E is of finite degree over F we know that each a_i is algebraic over F, and because the a_i 's form a basis for E over F we clearly have $E = F(a_1, \ldots, a_n)$.

p 378, #22 We have the following inclusion diagram:

$$\begin{array}{c}
F(a) \\
 \\
F(f(a)) \\
F \\
F
\end{array}$$

Since a is a root of $f(x) - f(a) \in F(f(a))[x]$, F(a) is algebraic over F(f(a)). Since f(a) is algebraic over F, F(f(a)) is algebraic over F. It follows that F(a) is algebraic over F and hence that a is algebraic over F.

p 388, #6 Since the two given polynomials have degree two and are irreducible over \mathbb{Z}_3 , both rings are fields with nine elements and are therefore isomorphic to GF(9), and hence to each other.

p 388, #8 The finite fields that contain $GF(p^5)$ are those of the form $GF(p^{5k})$, where $k \in \mathbb{Z}^+$. In order for $GF(p^5)$ to be a proper subfield we need $k \ge 2$ and in order for $GF(p^5)$ to be the largest subfield we need 5 to be the largest proper divisor of 5k. This is the case only when k = 2, 3, 5 and so the subfields in question are $GF(p^{10})$, $GF(p^{15})$, and $GF(p^{25})$.

p 388, #20 Since g(x) divides $x^{p^n} - x$ and every element in $GF(p^n)$ is a root of the latter, we see that $GF(p^n)$ contains every root of g(x). Let *a* be any such root in GF. Then we have

$$n = [GF(p^{n}) : GF(p)]$$

= [GF(p^{n}) : GF(p)(a)] [GF(p)(a) : GF(p)]
= [GF(p^{n}) : GF(p)(a)] deg g(x)

since the irreducibility of g(x) over GF(p) implies $[GF(p)(a) : GF(p)] = \deg g(x)$. This is what we were asked to show.

and

p 389, #24 Let *E* be a splitting field for p(x) over \mathbb{Z}_p . Since *E* is obtained from \mathbb{Z}_p by adjoining finitely many algebraic elements (i.e. the roots of p(x)), we know that *E* is a finite extension of \mathbb{Z}_p . Therefore, *E* is isomorphic to $GF(p^n)$ for some *n*. Since every element of $GF(p^n)$ is a root of the polynomial $x^{p^n} - x$, the same is true of the elements of *E*. Since *E* contains the roots of p(x), the roots of p(x) must also be roots of $x^{p^n} - x$. As none of the roots of p(x) are repeated, this implies that p(x) divides $x^{p^n} - x$.