Homework \#13 Solutions

p377, \#6 Let $m=\operatorname{deg} f(x), n=\operatorname{deg} g(x)$ and let b be a root of $g(x)$ in some extension of $F(a)$. We start by observing that, since $f(x)$ and $g(x)$ are irreducible over F, we have

$$
\begin{aligned}
& {[F(a, b): F]=[F(a, b): F(a)][F(a): F]=[F(a, b): F(a)] m} \\
& {[F(a, b): F]=[F(b, a): F(b)][F(b): F]=[F(b, a): F(b)] n}
\end{aligned}
$$

so that $[F(a, b): F]$ is divisible by both m and n. Since m and n are relatively prime, this implies that $[F(a, b): F]$ is actually divisible by $m n$.

Since $g(b)=0$ and $g(x) \in F(a)[x]$, the minimal polynomial $\widehat{g}(x)$ of b over $F(a)$ divides $g(x)$. This means that $[F(a, b): F(a)]=\operatorname{deg} \widehat{g}(x) \leq \operatorname{deg} g(x)=n$. Our computations above then show that $[F(a, b): F]=[F(a, b): F(a)] m \leq n m$. Since $m n$ divides $[F(a, b): F]$, it must actually be the case that $[F(a, b): F]=m n$. Comparing this with $[F(a, b): F]=$ $[F(a, b): F(a)] m$, we immediately conclude that $\operatorname{deg} \widehat{g}(x)=[F(a, b): F(a)]=n=\operatorname{deg} g(x)$. Since $\widehat{g}(x)$ divides $g(x)$ we find that $g(x)$ and $\widehat{g}(x)$ must differ only by a constant in $F(a)$. Since $\widehat{g}(x)$ is irreducible over $F(a)$, the same must therefore be true for $g(x)$.
p 378, \#8 According to Example 21.6 of the text, $\mathbb{Q}(\sqrt{3}+\sqrt{5})$ has degree 4 over \mathbb{Q}. Since $\mathbb{Q}(\sqrt{15})$ has degree 2 over \mathbb{Q}, we must have $[\mathbb{Q}(\sqrt{3}+\sqrt{5}): \mathbb{Q}(\sqrt{15})]=2$ from which it follows that $\{1, \sqrt{3}+\sqrt{5}\}$ is a basis for $\mathbb{Q}(\sqrt{3}+\sqrt{5})$ over $\mathbb{Q}(\sqrt{15})$.

Since $\sqrt{2}=\sqrt[4]{2}^{2} \in \mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2})$, we conclude that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2})=\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2})$. Moreover, since $x^{3}-2, x^{4}-2$ are irreducible over \mathbb{Q} of relatively prime degree, exercise 6 implies that $x^{4}-2$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$. Thus $[\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2}): \mathbb{Q}]=[\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2}): \mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2})$: $\mathbb{Q}]=4 \cdot 3=12$ and $\{1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}\}$ is a basis for $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2})$ over $\mathbb{Q}(\sqrt[3]{2})$. Since $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis for $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q}, we know that we can obtain a basis for $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2})$ over \mathbb{Q} by multiplying the previous two bases together. Therefore, a basis for our extension over \mathbb{Q} is

$$
\{1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}, \sqrt[3]{2}, \sqrt[3]{2} \sqrt[4]{2}, \sqrt[3]{2} \sqrt[4]{4}, \sqrt[3]{2} \sqrt[4]{8}, \sqrt[3]{4}, \sqrt[3]{4} \sqrt[4]{2}, \sqrt[3]{4} \sqrt[4]{4}, \sqrt[3]{4} \sqrt[4]{8}\}
$$

p 378, \#16 Let $\alpha=\sqrt[3]{2}+\sqrt[3]{4}$. Then $\alpha^{3}=6+6 \sqrt[3]{2}+6 \sqrt[3]{4}=6+6 \alpha$ so that α is a root of $f(x)=x^{3}-6 x-6 \in \mathbb{Q}[x]$. Since this polynomial is monic and irreducible (by Eisenstein's criterion with the prime 2), it must be the minimal polynomial for α.
p 378, $\# \mathbf{2 0}$ It was proven in class that if a_{1}, \ldots, a_{n} are algebraic over F then $E=$ $F\left(a_{1}, \ldots, a_{n}\right)$ has finite degree over F. Therefore we only prove the converse. Let $[E$: $F]=n<\infty$. Then there exist $a_{1}, \ldots, a_{n} \in E$ that form a basis for E over F. Since E is of finite degree over F we know that each a_{i} is algebraic over F, and because the a_{i} 's form a basis for E over F we clearly have $E=F\left(a_{1}, \ldots, a_{n}\right)$.
p 378, \#22 We have the following inclusion diagram:

Since a is a root of $f(x)-f(a) \in F(f(a))[x], F(a)$ is algebraic over $F(f(a))$. Since $f(a)$ is algebraic over $F, F(f(a))$ is algebraic over F. It follows that $F(a)$ is algebraic over F and hence that a is algebraic over F.
p 388, \#6 Since the two given polynomials have degree two and are irreducible over \mathbb{Z}_{3}, both rings are fields with nine elements and are therefore isomorphic to $\mathrm{GF}(9)$, and hence to each other.
p 388, \#8 The finite fields that contain $\operatorname{GF}\left(p^{5}\right)$ are those of the form $\operatorname{GF}\left(p^{5 k}\right)$, where $k \in \mathbb{Z}^{+}$. In order for $\operatorname{GF}\left(p^{5}\right)$ to be a proper subfield we need $k \geq 2$ and in order for $\operatorname{GF}\left(p^{5}\right)$ to be the largest subfield we need 5 to be the largest proper divisor of $5 k$. This is the case only when $k=2,3,5$ and so the subfields in question are $\operatorname{GF}\left(p^{10}\right), \operatorname{GF}\left(p^{15}\right)$, and $\operatorname{GF}\left(p^{25}\right)$.
p 388, $\# \mathbf{2 0}$ Since $g(x)$ divides $x^{p^{n}}-x$ and every element in $\operatorname{GF}\left(p^{n}\right)$ is a root of the latter, we see that $\operatorname{GF}\left(p^{n}\right)$ contains every root of $g(x)$. Let a be any such root in GF. Then we have

$$
\begin{aligned}
n & =\left[\operatorname{GF}\left(p^{n}\right): \operatorname{GF}(p)\right] \\
& =\left[\operatorname{GF}\left(p^{n}\right): \operatorname{GF}(p)(a)\right][\operatorname{GF}(p)(a): \operatorname{GF}(p)] \\
& =\left[\operatorname{GF}\left(p^{n}\right): \operatorname{GF}(p)(a)\right] \operatorname{deg} g(x)
\end{aligned}
$$

since the irreducibility of $g(x)$ over $\operatorname{GF}(p)$ implies $[\operatorname{GF}(p)(a): \operatorname{GF}(p)]=\operatorname{deg} g(x)$. This is what we were asked to show.
p 388, \#22 For any prime p we have

and

$\mathbf{p} \mathbf{3 8 9}, \# \mathbf{2 4}$ Let E be a splitting field for $p(x)$ over \mathbb{Z}_{p}. Since E is obtained from \mathbb{Z}_{p} by adjoining finitely many algebraic elements (i.e. the roots of $p(x)$), we know that E is a finite extension of \mathbb{Z}_{p}. Therefore, E is isomorphic to $G F\left(p^{n}\right)$ for some n. Since every element of $G F\left(p^{n}\right)$ is a root of the polynomial $x^{p^{n}}-x$, the same is true of the elements of E. Since E contains the roots of $p(x)$, the roots of $p(x)$ must also be roots of $x^{p^{n}}-x$. As none of the roots of $p(x)$ are repeated, this implies that $p(x)$ divides $x^{p^{n}}-x$.

