
Homework #1 Solutions

p 241, #2 The identity element is easily seen to be 6. Indeed, in Z10 we have

2 · 6 = 12 = 2

4 · 6 = 24 = 4

6 · 6 = 36 = 6

8 · 6 = 48 = 8.

p 241, #4 There are many possible examples. Probably the simplest occurs in Z4, where
both 1 and 3 are solutions to 2x = 2. We know that such a situation cannot happen in a
group, for in that case the equation ax = b has the unique solution x = a−1b.

p 241, #14 We prove the result for all nonnegative m first. If m = 0 the result is obvious.
Now assume that m ≥ 1. Then

m · (ab) = ab + ab + · · ·+ ab︸ ︷︷ ︸
m times

= (a + a + · · ·+ a)︸ ︷︷ ︸
m times

b = (m · a)b.

If we had instead factored a out on the right side, we would have obtained instead m · (ab) =
a(m · b). Thus, m · (ab) = (m · a)b = a(m · b) for all m ∈ Z+

0 . If m < 0 then m = −n for
some n > 0. We then have, using part 2 of Theorem 12.1 and the preceding result

m · (ab) = (−n) · (ab) = n · (−(ab)) = n · ((−a)b) = (n · (−a))b = ((−n) · a)b = (m · a)b.

That m · (ab) = a(m · b) as well is proven in a similar fashion. We therefore conclude that
m · (ab) = (m · a)b = a(m · b) for all negative integers m as well.

p 242, #22 The multiplication operation in R is associative by definition, the identity 1 of
R is a unit (1 · 1 = 1) and clearly functions as the identity in U(R), and the inverse of any
unit a is also a unit (a · a−1 = 1) which functions as the group inverse in U(R). So we need
only show that U(R) is closed under multiplication. So, let a, b ∈ U(R). Then both a−1 and
b−1 exist in R. Using the same trick we learned for groups, we see that

(ab)(b−1a−1) = a(bb−1)a−1 = a · 1 · a−1 = aa−1 = 1

which proves that b−1a−1 is the inverse of ab (we only need to check inverses on one side
since R is commutative), i.e. that ab ∈ U(R). This proves closure and hence that U(R) is a
group.

Note: The hypothesis that R is commutative is unnecessary, provided one defines a unit
in a (possibly noncommutative) ring with identity to be an element with both a left and a



right multiplicative inverse. The proof above is easily modified to apply in this case as well.

p 242, #24 We begin with the following observation. Let x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn) ∈ R1 ⊕R2 ⊕ . . .⊕Rn. Since the identity in the direct sum is 1 = (1, 1, . . . , 1)
and multiplication is performed component-wise we see that

xy = 1

if and only if
(x1y1, x2y2, . . . , xnyn) = (1, 1, . . . , 1)

if and only if
xiyi = 1

for i = 1, 2, . . . , n. From this it easily follows that x ∈ U(R1 ⊕ R2 ⊕ · · · ⊕ Rn) if and only if
xi ∈ U(Ri) for i = 1, 2, . . . , n, i.e. x = (x1, x2, . . . , xn) ∈ U(R1)⊕U(R2)⊕ · · · ⊕U(Rn). This
is precisely the statement that U(R1 ⊕R2 ⊕ · · · ⊕Rn) = U(R1)⊕ U(R2)⊕ · · · ⊕ U(Rn).

p 242, #28 In Z6 we have 2 · 4 = 8 = 2, proving that 4 | 2. Likewise, in Z8, 5 · 3 = 15 = 7
and in Z15, 3 · 9 = 27 = 12, proving 3 | 7 and 9 | 12, respectively.


