Homework \#1 Solutions

p 241, \#2 The identity element is easily seen to be 6 . Indeed, in \mathbb{Z}_{10} we have

$$
\begin{aligned}
& 2 \cdot 6=12=2 \\
& 4 \cdot 6=24=4 \\
& 6 \cdot 6=36=6 \\
& 8 \cdot 6=48=8 .
\end{aligned}
$$

p 241, \#4 There are many possible examples. Probably the simplest occurs in \mathbb{Z}_{4}, where both 1 and 3 are solutions to $2 x=2$. We know that such a situation cannot happen in a group, for in that case the equation $a x=b$ has the unique solution $x=a^{-1} b$.
p 241, \#14 We prove the result for all nonnegative m first. If $m=0$ the result is obvious. Now assume that $m \geq 1$. Then

$$
m \cdot(a b)=\underbrace{a b+a b+\cdots+a b}_{m \text { times }}=\underbrace{(a+a+\cdots+a)}_{m \text { times }} b=(m \cdot a) b .
$$

If we had instead factored a out on the right side, we would have obtained instead $m \cdot(a b)=$ $a(m \cdot b)$. Thus, $m \cdot(a b)=(m \cdot a) b=a(m \cdot b)$ for all $m \in \mathbb{Z}_{0}^{+}$. If $m<0$ then $m=-n$ for some $n>0$. We then have, using part 2 of Theorem 12.1 and the preceding result

$$
m \cdot(a b)=(-n) \cdot(a b)=n \cdot(-(a b))=n \cdot((-a) b)=(n \cdot(-a)) b=((-n) \cdot a) b=(m \cdot a) b
$$

That $m \cdot(a b)=a(m \cdot b)$ as well is proven in a similar fashion. We therefore conclude that $m \cdot(a b)=(m \cdot a) b=a(m \cdot b)$ for all negative integers m as well.
p 242, \#22 The multiplication operation in R is associative by definition, the identity 1 of R is a unit $(1 \cdot 1=1)$ and clearly functions as the identity in $U(R)$, and the inverse of any unit a is also a unit $\left(a \cdot a^{-1}=1\right)$ which functions as the group inverse in $U(R)$. So we need only show that $U(R)$ is closed under multiplication. So, let $a, b \in U(R)$. Then both a^{-1} and b^{-1} exist in R. Using the same trick we learned for groups, we see that

$$
(a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a \cdot 1 \cdot a^{-1}=a a^{-1}=1
$$

which proves that $b^{-1} a^{-1}$ is the inverse of $a b$ (we only need to check inverses on one side since R is commutative), i.e. that $a b \in U(R)$. This proves closure and hence that $U(R)$ is a group.

Note: The hypothesis that R is commutative is unnecessary, provided one defines a unit in a (possibly noncommutative) ring with identity to be an element with both a left and a
right multiplicative inverse. The proof above is easily modified to apply in this case as well.
p 242, \#24 We begin with the following observation. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R_{1} \oplus R_{2} \oplus \ldots \oplus R_{n}$. Since the identity in the direct sum is $1=(1,1, \ldots, 1)$ and multiplication is performed component-wise we see that

$$
x y=1
$$

if and only if

$$
\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)=(1,1, \ldots, 1)
$$

if and only if

$$
x_{i} y_{i}=1
$$

for $i=1,2, \ldots, n$. From this it easily follows that $x \in U\left(R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n}\right)$ if and only if $x_{i} \in U\left(R_{i}\right)$ for $i=1,2, \ldots, n$, i.e. $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in U\left(R_{1}\right) \oplus U\left(R_{2}\right) \oplus \cdots \oplus U\left(R_{n}\right)$. This is precisely the statement that $U\left(R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n}\right)=U\left(R_{1}\right) \oplus U\left(R_{2}\right) \oplus \cdots \oplus U\left(R_{n}\right)$.
p 242, $\# \mathbf{2 8}$ In \mathbb{Z}_{6} we have $2 \cdot 4=8=2$, proving that $4 \mid 2$. Likewise, in $\mathbb{Z}_{8}, 5 \cdot 3=15=7$ and in $\mathbb{Z}_{15}, 3 \cdot 9=27=12$, proving $3 \mid 7$ and $9 \mid 12$, respectively.

