Homework #2 Solutions

pp 254-257: 18, 34, 36, 50, 54
p 241, #18 We apply the subring test. First of all, S # () since a -0 = 0 implies 0 € S.
Now let z,y € S. Then a(z —y) =ar —ay =0—0 =0 and a(zy) = (ax)y =0-y = 0 so
that © — y,xy € S. Therefore S is a subring of R.

p 242, #38 Z¢ = {0,1,2,3,4,5} is not a subring of Z1, since it is not closed under addition
mod 12: 5 +5=10in Zlg and 10 ¢ ZG.
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since a — ¢,b—d € Z. Also
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since ac + ad,bc + bd € Z. Since R is clearly nonempty, the subring test implies that R is
indeed a subring of My(Z).

p 254, #4 The zero divisors in Zsyg are 2,4,5,6,8,10,12,14,15,16 and 18, since

210 = 0mod 20
4-15 = 0 mod 20
6-10 = 0 mod 20
8-5 = 0mod 20
12-5 = 0mod 20
14-10 = 0 mod 20
16-5 = 0mod 20
18-10 = 0 mod 20

and every nonzero element not in this list is a unit. In particular this shows that the zero
divisors in Zsy are precisely the nonzero nonunits. This statement generalizes to every Z,
(Why?).

p 254, #6 According to the final statement of the preceding problem, we’ll need to look
outside of Z,,. An easy place to look is Z. Indeed, any element other than 0, +1 is nonzero,
not a unit, and not a zero-divisor.



p 255, #18 The element 3 + i is a zero divisor in Zs[i| since
(341)(2+1) =545 =0+ 0i

after reducing the coefficients mod 5.

p 255, #20 By a previous homework exercise

The zero divisors in Zs @ Zg come in two flavors: (0,a) for a = 1,2,3,4,5 and (b, ¢) where
b= 1,2 and ¢ = 0,2,3,4, for a total of 13 elements. The idempotents satisfy (a,b)? =
(a%,b%) = (a,b). Therefore, a®> = a in Zz and b* = b in Zg. It is easy to see that this means
a=0,1and b=0,1,3,4, which gives 8 idempotents. Finally, the nilpotent elements satisfy
(a,b)™ = (a™,b") = (0,0) for some n € Z*. But a” = 0 has no solutions in Zj other than
a = 0 and 0" = 0 has has no solution in Zg other than b = 0. Hence (0,0) is the only
idempotent.

p 256, #30 Let D be an integral domain and let x € D so that x is its own inverse. Then
x? = 1, which is the same as 22 — 1 = 0. Factoring yields (z — 1)(z + 1) = 0 and since D is
a domain this means t — 1 =0orx+1=0, i.e. v = £1.

p 256, #34 Direct computation yields

\0+Oi 14+0: 0+4+1: 141
0+0:{0+0: 0+0: 0+0¢ 0+0:
140 |0+00 1400 O+10 1+4+1s
O0+10|0+0c O+1¢ 1+0¢ 1+12
1+10]0+0: 1+1¢ 1+1¢ 040

proving that Zs[i] is neither an integral domain nor a field, since 1 + 1i is a zero divisor.

p 256, #36 We prove only the general statement: Zp[\/E] is a field if and only if the equation
x? = k has no solution in Z,. For one direction, suppose that z? = k has no solution in Z,.

We will show that every nonzero element in Z,[v/k] has an inverse. Let a+bv'k € Z,[Vk] be

nonzero. If b = 0 then a # 0 and a + bv/k = a, which has an inverse in Z, hence in Z;[v/k].
If b # 0 then a* — b*k # 0 in Z,, for otherwise we would have k = (ab™')?, with ab™* € Z,,.

So ¢ = (a® — b*k) ™" exists in Z, and ac — bev/k is an element of Z,[v/k] which satisfies
(a+ 0VE)(ac — bevVk) = (a*c — b*ck) + 0VE = c(a® — b*k) = 1

by the definition of ¢. Therefore, a + bv/k has an inverse. Having shown that the arbitrary
nonzero element has an inverse, we conclude that Z,[v/k] is a field when 22 = k has no
solution in Z,,.



For the converse, we prove that if 22 = & has a solution in Z, then Z,[v/k] is not an integral
domain and therefore is not a field. Let a € Z, satisfy a*> = k mod p. Let x = a+ (p— DVE
and y = a + Vk. Then neither z nor y is zero in Zp[\/E} yet

zy = (®+k(p—1))+ (a(p—1) + a)Vk = (a* — k) + (a — a)Vk = 0+ 0Vk

where we have reduced the coefficients mod p at each step. Thus, Zp[\/E] pOSsesses zero
divisors and is not a field.

p 257, #50 The characteristic is 0 since for any n € Z* we have n - (0,4) = (0,4n) and 4n
will never be zero in Z.

p 257, #54 First of all, we know from previous work that U(F) is a multiplicative group.
But, since F is a field, U(F) = F'\ {0}. Therefore, since F' has n elements, F'\ {0} = U(F)
is a finite group with n — 1 elements. Since the order of an element in a finite group divides
the order of the group itself, we see that for any nonzero € F' we have 2"~! = 1. Note that
if we multiply both sides of this equation by = we get £ = x, which is an equation satisfied
by every element of F'.



