Homework #2 Solutions

pp 254-257: 18, 34, 36, 50, 54

p 241, #18 We apply the subring test. First of all, $S \neq \emptyset$ since $a \cdot 0 = 0$ implies $0 \in S$. Now let $x, y \in S$. Then a(x - y) = ax - ay = 0 - 0 = 0 and $a(xy) = (ax)y = 0 \cdot y = 0$ so that $x - y, xy \in S$. Therefore S is a subring of R.

p 242, #38 $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ is *not* a subring of \mathbb{Z}_{12} since it is not closed under addition mod 12: 5 + 5 = 10 in \mathbb{Z}_{12} and $10 \notin \mathbb{Z}_6$.

p 243, #42 Let
$$X = \begin{pmatrix} a & a \\ b & b \end{pmatrix}, Y = \begin{pmatrix} c & c \\ d & d \end{pmatrix} \in R$$
. Then
$$X - Y = \begin{pmatrix} a - c & a - c \\ b - d & b - d \end{pmatrix} \in R$$

since $a - c, b - d \in \mathbb{Z}$. Also

$$XY = \left(\begin{array}{cc} ac + ad & ac + ad \\ bc + bd & bc + bd \end{array}\right) \in R$$

since $ac + ad, bc + bd \in \mathbb{Z}$. Since R is clearly nonempty, the subring test implies that R is indeed a subring of $M_2(\mathbb{Z})$.

p 254, #4 The zero divisors in \mathbb{Z}_{20} are 2, 4, 5, 6, 8, 10, 12, 14, 15, 16 and 18, since

$$2 \cdot 10 = 0 \mod 20$$

$$4 \cdot 15 = 0 \mod 20$$

$$6 \cdot 10 = 0 \mod 20$$

$$8 \cdot 5 = 0 \mod 20$$

$$12 \cdot 5 = 0 \mod 20$$

$$14 \cdot 10 = 0 \mod 20$$

$$16 \cdot 5 = 0 \mod 20$$

$$18 \cdot 10 = 0 \mod 20$$

and every nonzero element not in this list is a unit. In particular this shows that the zero divisors in \mathbb{Z}_{20} are precisely the nonzero nonunits. This statement generalizes to every \mathbb{Z}_n (Why?).

p 254, #6 According to the final statement of the preceding problem, we'll need to look outside of Z_n . An easy place to look is \mathbb{Z} . Indeed, any element other than $0, \pm 1$ is nonzero, not a unit, and not a zero-divisor.

p 255, #18 The element 3 + i is a zero divisor in $\mathbb{Z}_5[i]$ since

$$(3+i)(2+i) = 5 + 5i = 0 + 0i$$

after reducing the coefficients mod 5.

p 255, #20 By a previous homework exercise

$$U(\mathbb{Z}_3 \oplus \mathbb{Z}_6) = U(\mathbb{Z}_3) \oplus U(\mathbb{Z}_6) = \{1, 2\} \oplus \{1, 5\} = \{(1, 1), (1, 5), (2, 1), (2, 5)\}.$$

The zero divisors in $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ come in two flavors: (0, a) for a = 1, 2, 3, 4, 5 and (b, c) where b = 1, 2 and c = 0, 2, 3, 4, for a total of 13 elements. The idempotents satisfy $(a, b)^2 = (a^2, b^2) = (a, b)$. Therefore, $a^2 = a$ in \mathbb{Z}_3 and $b^2 = b$ in \mathbb{Z}_6 . It is easy to see that this means a = 0, 1 and b = 0, 1, 3, 4, which gives 8 idempotents. Finally, the nilpotent elements satisfy $(a, b)^n = (a^n, b^n) = (0, 0)$ for some $n \in \mathbb{Z}^+$. But $a^n = 0$ has no solutions in \mathbb{Z}_3 other than a = 0 and $b^n = 0$ has has no solution in \mathbb{Z}_6 other than b = 0. Hence (0, 0) is the only idempotent.

p 256, #30 Let *D* be an integral domain and let $x \in D$ so that *x* is its own inverse. Then $x^2 = 1$, which is the same as $x^2 - 1 = 0$. Factoring yields (x - 1)(x + 1) = 0 and since *D* is a domain this means x - 1 = 0 or x + 1 = 0, i.e. $x = \pm 1$.

р	256,	#34	Direct	computation	ı yie	lds
					• /	

	0 + 0i	1 + 0i	0 + 1i	1 + 1i
0 + 0i				
1 + 0i	0 + 0i	1 + 0i	0 + 1i	1 + 1i
0 + 1i	0 + 0i	0 + 1i	1 + 0i	1 + 1i
1 + 1i	0 + 0i	1 + 1i	1 + 1i	0 + 0i

proving that $\mathbb{Z}_2[i]$ is neither an integral domain nor a field, since 1 + 1i is a zero divisor.

p 256, #36 We prove only the general statement: $\mathbb{Z}_p[\sqrt{k}]$ is a field if and only if the equation $x^2 = k$ has no solution in \mathbb{Z}_p . For one direction, suppose that $x^2 = k$ has no solution in \mathbb{Z}_p . We will show that every nonzero element in $\mathbb{Z}_p[\sqrt{k}]$ has an inverse. Let $a + b\sqrt{k} \in \mathbb{Z}_p[\sqrt{k}]$ be nonzero. If b = 0 then $a \neq 0$ and $a + b\sqrt{k} = a$, which has an inverse in \mathbb{Z}_7 , hence in $\mathbb{Z}_7[\sqrt{k}]$. If $b \neq 0$ then $a^2 - b^2k \neq 0$ in \mathbb{Z}_p , for otherwise we would have $k = (ab^{-1})^2$, with $ab^{-1} \in \mathbb{Z}_p$. So $c = (a^2 - b^2k)^{-1}$ exists in \mathbb{Z}_p and $ac - bc\sqrt{k}$ is an element of $\mathbb{Z}_p[\sqrt{k}]$ which satisfies

$$(a + b\sqrt{k})(ac - bc\sqrt{k}) = (a^2c - b^2ck) + 0\sqrt{k} = c(a^2 - b^2k) = 1$$

by the definition of c. Therefore, $a + b\sqrt{k}$ has an inverse. Having shown that the arbitrary nonzero element has an inverse, we conclude that $\mathbb{Z}_p[\sqrt{k}]$ is a field when $x^2 = k$ has no solution in \mathbb{Z}_p .

For the converse, we prove that if $x^2 = k$ has a solution in \mathbb{Z}_p then $\mathbb{Z}_p[\sqrt{k}]$ is not an integral domain and therefore is not a field. Let $a \in \mathbb{Z}_p$ satisfy $a^2 = k \mod p$. Let $x = a + (p-1)\sqrt{k}$ and $y = a + \sqrt{k}$. Then neither x nor y is zero in $\mathbb{Z}_p[\sqrt{k}]$ yet

$$xy = (a^{2} + k(p-1)) + (a(p-1) + a)\sqrt{k} = (a^{2} - k) + (a-a)\sqrt{k} = 0 + 0\sqrt{k}$$

where we have reduced the coefficients mod p at each step. Thus, $\mathbb{Z}_p[\sqrt{k}]$ possesses zero divisors and is not a field.

p 257, #50 The characteristic is 0 since for any $n \in \mathbb{Z}^+$ we have $n \cdot (0, 4) = (0, 4n)$ and 4n will never be zero in \mathbb{Z} .

p 257, #54 First of all, we know from previous work that U(F) is a multiplicative group. But, since F is a field, $U(F) = F \setminus \{0\}$. Therefore, since F has n elements, $F \setminus \{0\} = U(F)$ is a finite group with n-1 elements. Since the order of an element in a finite group divides the order of the group itself, we see that for any nonzero $x \in F$ we have $x^{n-1} = 1$. Note that if we multiply both sides of this equation by x we get $x^n = x$, which is an equation satisfied by *every* element of F.