Homework \#2 Solutions

pp 254-257: 18, 34, 36, 50, 54
p 241, \#18 We apply the subring test. First of all, $S \neq \emptyset$ since $a \cdot 0=0$ implies $0 \in S$. Now let $x, y \in S$. Then $a(x-y)=a x-a y=0-0=0$ and $a(x y)=(a x) y=0 \cdot y=0$ so that $x-y, x y \in S$. Therefore S is a subring of R.
p 242, $\# \mathbf{3 8} \mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ is not a subring of \mathbb{Z}_{12} since it is not closed under addition $\bmod 12: 5+5=10$ in \mathbb{Z}_{12} and $10 \notin \mathbb{Z}_{6}$.
p 243, \#42 Let $X=\left(\begin{array}{cc}a & a \\ b & b\end{array}\right), Y=\left(\begin{array}{ll}c & c \\ d & d\end{array}\right) \in R$. Then

$$
X-Y=\left(\begin{array}{ll}
a-c & a-c \\
b-d & b-d
\end{array}\right) \in R
$$

since $a-c, b-d \in \mathbb{Z}$. Also

$$
X Y=\left(\begin{array}{cc}
a c+a d & a c+a d \\
b c+b d & b c+b d
\end{array}\right) \in R
$$

since $a c+a d, b c+b d \in \mathbb{Z}$. Since R is clearly nonempty, the subring test implies that R is indeed a subring of $M_{2}(\mathbb{Z})$.
p 254, \#4 The zero divisors in \mathbb{Z}_{20} are $2,4,5,6,8,10,12,14,15,16$ and 18 , since

$$
\begin{aligned}
2 \cdot 10 & =0 \bmod 20 \\
4 \cdot 15 & =0 \bmod 20 \\
6 \cdot 10 & =0 \bmod 20 \\
8 \cdot 5 & =0 \bmod 20 \\
12 \cdot 5 & =0 \bmod 20 \\
14 \cdot 10 & =0 \bmod 20 \\
16 \cdot 5 & =0 \bmod 20 \\
18 \cdot 10 & =0 \bmod 20
\end{aligned}
$$

and every nonzero element not in this list is a unit. In particular this shows that the zero divisors in \mathbb{Z}_{20} are precisely the nonzero nonunits. This statement generalizes to every \mathbb{Z}_{n} (Why?).
p 254, \#6 According to the final statement of the preceding problem, we'll need to look outside of Z_{n}. An easy place to look is \mathbb{Z}. Indeed, any element other than $0, \pm 1$ is nonzero, not a unit, and not a zero-divisor.
p 255, $\# \mathbf{1 8}$ The element $3+i$ is a zero divisor in $\mathbb{Z}_{5}[i]$ since

$$
(3+i)(2+i)=5+5 i=0+0 i
$$

after reducing the coefficients mod 5 .
p 255, \#20 By a previous homework exercise

$$
U\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}\right)=U\left(\mathbb{Z}_{3}\right) \oplus U\left(\mathbb{Z}_{6}\right)=\{1,2\} \oplus\{1,5\}=\{(1,1),(1,5),(2,1),(2,5)\}
$$

The zero divisors in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$ come in two flavors: $(0, a)$ for $a=1,2,3,4,5$ and (b, c) where $b=1,2$ and $c=0,2,3,4$, for a total of 13 elements. The idempotents satisfy $(a, b)^{2}=$ $\left(a^{2}, b^{2}\right)=(a, b)$. Therefore, $a^{2}=a$ in \mathbb{Z}_{3} and $b^{2}=b$ in \mathbb{Z}_{6}. It is easy to see that this means $a=0,1$ and $b=0,1,3,4$, which gives 8 idempotents. Finally, the nilpotent elements satisfy $(a, b)^{n}=\left(a^{n}, b^{n}\right)=(0,0)$ for some $n \in \mathbb{Z}^{+}$. But $a^{n}=0$ has no solutions in \mathbb{Z}_{3} other than $a=0$ and $b^{n}=0$ has has no solution in \mathbb{Z}_{6} other than $b=0$. Hence $(0,0)$ is the only idempotent.
p 256, $\# 30$ Let D be an integral domain and let $x \in D$ so that x is its own inverse. Then $x^{2}=1$, which is the same as $x^{2}-1=0$. Factoring yields $(x-1)(x+1)=0$ and since D is a domain this means $x-1=0$ or $x+1=0$, i.e. $x= \pm 1$.
p 256, \#34 Direct computation yields

	$0+0 i$	$1+0 i$	$0+1 i$	$1+1 i$
$0+0 i$				
$1+0 i$	$0+0 i$	$1+0 i$	$0+1 i$	$1+1 i$
$0+1 i$	$0+0 i$	$0+1 i$	$1+0 i$	$1+1 i$
$1+1 i$	$0+0 i$	$1+1 i$	$1+1 i$	$0+0 i$

proving that $\mathbb{Z}_{2}[i]$ is neither an integral domain nor a field, since $1+1 i$ is a zero divisor.
p 256, $\# 36$ We prove only the general statement: $\mathbb{Z}_{p}[\sqrt{k}]$ is a field if and only if the equation $x^{2}=k$ has no solution in \mathbb{Z}_{p}. For one direction, suppose that $x^{2}=k$ has no solution in \mathbb{Z}_{p}. We will show that every nonzero element in $\mathbb{Z}_{p}[\sqrt{k}]$ has an inverse. Let $a+b \sqrt{k} \in \mathbb{Z}_{p}[\sqrt{k}]$ be nonzero. If $b=0$ then $a \neq 0$ and $a+b \sqrt{k}=a$, which has an inverse in \mathbb{Z}_{7}, hence in $\mathbb{Z}_{7}[\sqrt{k}]$. If $b \neq 0$ then $a^{2}-b^{2} k \neq 0$ in \mathbb{Z}_{p}, for otherwise we would have $k=\left(a b^{-1}\right)^{2}$, with $a b^{-1} \in \mathbb{Z}_{p}$. So $c=\left(a^{2}-b^{2} k\right)^{-1}$ exists in \mathbb{Z}_{p} and $a c-b c \sqrt{k}$ is an element of $\mathbb{Z}_{p}[\sqrt{k}]$ which satisfies

$$
(a+b \sqrt{k})(a c-b c \sqrt{k})=\left(a^{2} c-b^{2} c k\right)+0 \sqrt{k}=c\left(a^{2}-b^{2} k\right)=1
$$

by the definition of c. Therefore, $a+b \sqrt{k}$ has an inverse. Having shown that the arbitrary nonzero element has an inverse, we conclude that $\mathbb{Z}_{p}[\sqrt{k}]$ is a field when $x^{2}=k$ has no solution in \mathbb{Z}_{p}.

For the converse, we prove that if $x^{2}=k$ has a solution in \mathbb{Z}_{p} then $\mathbb{Z}_{p}[\sqrt{k}]$ is not an integral domain and therefore is not a field. Let $a \in Z_{p}$ satisfy $a^{2}=k \bmod p$. Let $x=a+(p-1) \sqrt{k}$ and $y=a+\sqrt{k}$. Then neither x nor y is zero in $\mathbb{Z}_{p}[\sqrt{k}]$ yet

$$
x y=\left(a^{2}+k(p-1)\right)+(a(p-1)+a) \sqrt{k}=\left(a^{2}-k\right)+(a-a) \sqrt{k}=0+0 \sqrt{k}
$$

where we have reduced the coefficients mod p at each step. Thus, $\mathbb{Z}_{p}[\sqrt{k}]$ possesses zero divisors and is not a field.
p 257, \#50 The characteristic is 0 since for any $n \in \mathbb{Z}^{+}$we have $n \cdot(0,4)=(0,4 n)$ and $4 n$ will never be zero in \mathbb{Z}.
p 257, \#54 First of all, we know from previous work that $U(F)$ is a multiplicative group. But, since F is a field, $U(F)=F \backslash\{0\}$. Therefore, since F has n elements, $F \backslash\{0\}=U(F)$ is a finite group with $n-1$ elements. Since the order of an element in a finite group divides the order of the group itself, we see that for any nonzero $x \in F$ we have $x^{n-1}=1$. Note that if we multiply both sides of this equation by x we get $x^{n}=x$, which is an equation satisfied by every element of F.

