
Homework #2 Solutions

pp 254-257: 18, 34, 36, 50, 54
p 241, #18 We apply the subring test. First of all, S 6= ∅ since a · 0 = 0 implies 0 ∈ S.
Now let x, y ∈ S. Then a(x − y) = ax − ay = 0 − 0 = 0 and a(xy) = (ax)y = 0 · y = 0 so
that x− y, xy ∈ S. Therefore S is a subring of R.

p 242, #38 Z6 = {0, 1, 2, 3, 4, 5} is not a subring of Z12 since it is not closed under addition
mod 12: 5 + 5 = 10 in Z12 and 10 6∈ Z6.

p 243, #42 Let X =

(
a a
b b

)
, Y =

(
c c
d d

)
∈ R. Then

X − Y =

(
a− c a− c
b− d b− d

)
∈ R

since a− c, b− d ∈ Z. Also

XY =

(
ac + ad ac + ad
bc + bd bc + bd

)
∈ R

since ac + ad, bc + bd ∈ Z. Since R is clearly nonempty, the subring test implies that R is
indeed a subring of M2(Z).

p 254, #4 The zero divisors in Z20 are 2, 4, 5, 6, 8, 10, 12, 14, 15, 16 and 18, since

2 · 10 = 0 mod 20

4 · 15 = 0 mod 20

6 · 10 = 0 mod 20

8 · 5 = 0 mod 20

12 · 5 = 0 mod 20

14 · 10 = 0 mod 20

16 · 5 = 0 mod 20

18 · 10 = 0 mod 20

and every nonzero element not in this list is a unit. In particular this shows that the zero
divisors in Z20 are precisely the nonzero nonunits. This statement generalizes to every Zn

(Why?).

p 254, #6 According to the final statement of the preceding problem, we’ll need to look
outside of Zn. An easy place to look is Z. Indeed, any element other than 0,±1 is nonzero,
not a unit, and not a zero-divisor.



p 255, #18 The element 3 + i is a zero divisor in Z5[i] since

(3 + i)(2 + i) = 5 + 5i = 0 + 0i

after reducing the coefficients mod 5.

p 255, #20 By a previous homework exercise

U(Z3 ⊕ Z6) = U(Z3)⊕ U(Z6) = {1, 2} ⊕ {1, 5} = {(1, 1), (1, 5), (2, 1), (2, 5)}.

The zero divisors in Z3 ⊕ Z6 come in two flavors: (0, a) for a = 1, 2, 3, 4, 5 and (b, c) where
b = 1, 2 and c = 0, 2, 3, 4, for a total of 13 elements. The idempotents satisfy (a, b)2 =
(a2, b2) = (a, b). Therefore, a2 = a in Z3 and b2 = b in Z6. It is easy to see that this means
a = 0, 1 and b = 0, 1, 3, 4, which gives 8 idempotents. Finally, the nilpotent elements satisfy
(a, b)n = (an, bn) = (0, 0) for some n ∈ Z+. But an = 0 has no solutions in Z3 other than
a = 0 and bn = 0 has has no solution in Z6 other than b = 0. Hence (0, 0) is the only
idempotent.

p 256, #30 Let D be an integral domain and let x ∈ D so that x is its own inverse. Then
x2 = 1, which is the same as x2 − 1 = 0. Factoring yields (x− 1)(x + 1) = 0 and since D is
a domain this means x− 1 = 0 or x + 1 = 0, i.e. x = ±1.

p 256, #34 Direct computation yields

0 + 0i 1 + 0i 0 + 1i 1 + 1i
0 + 0i 0 + 0i 0 + 0i 0 + 0i 0 + 0i
1 + 0i 0 + 0i 1 + 0i 0 + 1i 1 + 1i
0 + 1i 0 + 0i 0 + 1i 1 + 0i 1 + 1i
1 + 1i 0 + 0i 1 + 1i 1 + 1i 0 + 0i

proving that Z2[i] is neither an integral domain nor a field, since 1 + 1i is a zero divisor.

p 256, #36 We prove only the general statement: Zp[
√

k] is a field if and only if the equation
x2 = k has no solution in Zp. For one direction, suppose that x2 = k has no solution in Zp.

We will show that every nonzero element in Zp[
√

k] has an inverse. Let a+ b
√

k ∈ Zp[
√

k] be

nonzero. If b = 0 then a 6= 0 and a + b
√

k = a, which has an inverse in Z7, hence in Z7[
√

k].
If b 6= 0 then a2 − b2k 6= 0 in Zp, for otherwise we would have k = (ab−1)2, with ab−1 ∈ Zp.

So c = (a2 − b2k)−1 exists in Zp and ac− bc
√

k is an element of Zp[
√

k] which satisfies

(a + b
√

k)(ac− bc
√

k) = (a2c− b2ck) + 0
√

k = c(a2 − b2k) = 1

by the definition of c. Therefore, a + b
√

k has an inverse. Having shown that the arbitrary
nonzero element has an inverse, we conclude that Zp[

√
k] is a field when x2 = k has no

solution in Zp.



For the converse, we prove that if x2 = k has a solution in Zp then Zp[
√

k] is not an integral

domain and therefore is not a field. Let a ∈ Zp satisfy a2 = k mod p. Let x = a + (p− 1)
√

k

and y = a +
√

k. Then neither x nor y is zero in Zp[
√

k] yet

xy = (a2 + k(p− 1)) + (a(p− 1) + a)
√

k = (a2 − k) + (a− a)
√

k = 0 + 0
√

k

where we have reduced the coefficients mod p at each step. Thus, Zp[
√

k] possesses zero
divisors and is not a field.

p 257, #50 The characteristic is 0 since for any n ∈ Z+ we have n · (0, 4) = (0, 4n) and 4n
will never be zero in Z.

p 257, #54 First of all, we know from previous work that U(F ) is a multiplicative group.
But, since F is a field, U(F ) = F \ {0}. Therefore, since F has n elements, F \ {0} = U(F )
is a finite group with n− 1 elements. Since the order of an element in a finite group divides
the order of the group itself, we see that for any nonzero x ∈ F we have xn−1 = 1. Note that
if we multiply both sides of this equation by x we get xn = x, which is an equation satisfied
by every element of F .


