
Homework #3 Solutions

pp 268-271: 12, 14, 18, 42, 44 pp 268-271: 6, 30, 32, 36, 52, 56
p 268, #6 We will find the maximal ideals in the general case of Zn only. The ideals of Zn

are, first of all, additive subgroups of Zn. These we know to all have the form 〈d〉 where d
divides n. But, as we know, the set 〈d〉 is the ideal generated by d. So we have just proven
that

The ideals in Zn are precisely the sets of the form 〈d〉 where d divides n.

Since we are interested in maximal ideals, and this concept is defined in terms of containment
of ideals in one another, we now need to determine when we can have 〈d1〉 ⊂ 〈d2〉. This is
the case if and only if d1 ∈ 〈d2〉, which is true if and only if there is an element a ∈ Z so
that ad2 = d1, i.e. if and only if d2 divides d1.

We are now ready to prove the main result: an ideal I in Zn is maximal if and only if
I = 〈p〉 where p is a prime dividing n. If I has this form and J is another ideal in Zn with
I ⊂ J then J = 〈d〉 for some d dividing n. By our comments above this means that d divides
p, i.e. d = 1 or d = p, which means that J = Zn or J = I, proving that I is maximal. For
the converse, suppose I = 〈d〉 (d dividing n) is maximal but d is not prime. Then d = kl
with d > k, l > 1. But then I $ 〈k〉 $ Zn. The first inequality follows from the fact that
k < d implies k 6∈ I. The second follows from the fact that k is a divisor of n but is not 1,
therefore is not a unit in Zn and so 1 6∈ 〈k〉. But this string of inequalities implies that I is
not maximal, a contradiction. Therefore d must be prime, and we are finished.

p 269, #12 As usual, we use the two step ideal test. It is clear that AB is nonempty since
0 ∈ A, B so that 0 = 0 · 0 ∈ AB. Let x, y ∈ AB. Then x = a1b1 + a2b2 + · · · anbn and
y = c1d1 + c2d2 + · · ·+ cmdm for some ai, ci ∈ A, bi, di ∈ B and m, n ∈ Z+. Then

x− y = a1b1 + a2b2 + · · · anbn − (c1d1 + c2d2 + · · ·+ cm)

= a1b1 + a2b2 + · · · anbn − c1d1 − c2d2 − · · · − cm

= a1b1 + a2b2 + · · · anbn + (−c1)d1 + (−c2)d2 + · · ·+ (−cm)dm ∈ AB

since ai,−ci ∈ A, bi, di ∈ B and m + n ∈ Z+. If r ∈ R then we have

rx = r(a1b1 + a2b2 + · · · anbn)

= r(a1b1) + r(a2b2) + · · ·+ r(anbn)

= (ra1)b1 + (ra2)b2 + · · ·+ (ran)bn ∈ AB

since rai ∈ A for all i. A similar line of reasoning shows that xr ∈ AB, since bir ∈ B for
all i. Since AB is nonempty, is closed under subtraction, and is closed under left and right
multiplication by R we conclude that AB is an ideal.

p 269, #14 Let x ∈ AB. Then, as above, x = a1b1 + a2b2 + · · · anbn for some ai ∈ A
and bi ∈ B. Since A is closed under right multiplication by R, each aibi ∈ A, and therefore
x = a1b1 +a2b2 + · · · anbn ∈ A since A is closed under addition as well. Likewise, closure of B



under right multiplication implies that aibi ∈ B for all i so that x = a1b1+a2b2+· · · anbn ∈ B
as well. Hence, x ∈ A ∩ B. Since x was an arbitrary element of AB we conclude that
AB ⊂ A ∩B.

p 269, #18 We are given 〈35〉 $ J $ I in Z. Since every ideal in Z is principal we can
write J = 〈n〉 and I = 〈m〉 for some m, n ∈ Z+. The containments above therefore imply
that n divides, but does not equal, 35 and m divides, but does not equal, n. It follows that
n = 5 or 7 and m = 1. That is, J = 〈5〉 or J = 〈7〉 and I = Z.

p 270, #30 Since Z8 and Z30 both have identities, we know that the ideals in R = Z8⊕Z30

all have the form I ⊕ J where I is an ideal in Z8 and J is an ideal in Z30. In order for I ⊕ J
to be maximal, one of I or J must be maximal and the other must be the entire ring. By
an earlier exercise, then, the maximal ideals in R are < 〈2〉 ⊕ Z30, Z8 ⊕ 〈2〉, Z8 ⊕ 〈3〉 and
Z8 ⊕ 〈5〉. It is easy to see that

(Z8 ⊕ Z30)/(〈2〉 ⊕ Z30) ∼= (Z8/〈2〉)⊕ (Z30/Z30) ∼= Z2

(Z8 ⊕ Z30)/(Z8 ⊕ 〈2〉) ∼= (Z8/Z8)⊕ (Z30/〈2〉) ∼= Z2

(Z8 ⊕ Z30)/(Z8 ⊕ 〈3〉) ∼= (Z8/Z8)⊕ (Z30/〈3〉) ∼= Z3

(Z8 ⊕ Z30)/(Z8 ⊕ 〈5〉) ∼= (Z8/Z8)⊕ (Z30/〈5〉) ∼= Z5.

p 270, #32 Let J = I + 〈2〉 = 〈x, 2〉. Then I $ J since 2 ∈ J but 2 6∈ I. On the other
hand, J 6= Z[x]: the elements of J all have the form f(x) = xg(x) + 2h(x), g, h ∈ Z[x], so
that f(0) = 2h(0) is an even integer, but the constant polynomial 1 clearly does not have
this property. It follows that I is not maximal.

p 270, #36 Notice that 2(1 + i) = 2 + 2i but 2, 1 + i 6∈ I. This is because the elements of I
all have the form (a + bi)(2 + 2i) = 2(a− b) + 2(a + b)i for some a, b ∈ Z, but neither 2 nor
1 + i can be written in this form. Thus I is not prime.

Since the real and imaginary parts of any element in I are both even integers, and 2, 2i 6∈ I,
it follows that the cosets I, 1+I, 2+I, 3+I, 1+i+I, 1+(1+i)+I, 2+(1+i)+I, 3+(1+i)+I
are distinct. Moreover, given a + bi in Z[i], we have a + bi = (a− b) + b(1 + i). If we write
a− b = 4k + r with r ∈ Z4 and b = 2l + s with s ∈ Z2 then we have

a + bi = (4k + r) + (2l + s)(1 + i) = 4k + (2 + 2i)l + r + s(1 + i)

so that
a + bi + I = r + s(1 + i) + I

since 2 + 2i, 4 ∈ I. That is, a + bi + I is one of the cosets we have already listed. Hence,
Z[i]/I has exactly 8 elements. The characteristic of Z[i]/I is 4 since 1, 2, 3 6∈ I but 4 ∈ I
implies that the additive order of 1 + I is 4.



p 270, #42 We use the ideal test. Since 01 = 0 ∈ A, we see that 0 ∈ N(A) so that
N(A) 6= ∅. Let a, b ∈ N(A). Then there exist m,n ∈ Z+ so that am, bn ∈ A. Thus, for any
r ∈ R we have

(ra)m = rmam ∈ A

since rm ∈ R and A is an ideal (here we have used that R is commutative). Therefore
ra ∈ N(A). As R is commutative, this implies that N(A) is closed under multiplication (on
either side) by elements of R. It remains to show that a− b ∈ N(A). We begin by writing,
via the binomial theorem,

(a− b)m+n =
m+n∑
k=0

(
m + n

k

)
(−1)m+n−kakbm+n−k.

For k ≥ m in this sum, ak ∈ A, and since A is an ideal this means
(

m+n
k

)
(−1)m+n−kakbm+n−k ∈

A. Similarly, for k < m we have m + n − k > n so that bm+n−k ∈ A and, as above,(
m+n

k

)
(−1)m+n−kakbm+n−k ∈ A. Since A is closed under addition we conclude that (a −

b)m+n ∈ A so that a− b ∈ N(A), as needed.

p 270, #44 In order for a ∈ Z36 to be in N(〈0〉) we must have an divisible by 36 for some
n ∈ Z+. This happens if and only if a is divisible by all of the prime factors of 36, which are
2 and 3. That is, a must be divisible by 6. Hence N(〈0〉) = 〈6〉.

It is clear that 〈3〉 ⊂ N(〈3〉). By above, 〈3〉 is maximal so that N(〈3〉) = 〈3〉 or N(〈3〉) =
Z36. The latter is impossible since 1 6∈ N(〈3〉). Hence N(〈3〉) = 〈3〉.

One can easily verify that N(N(A)) = N(A) for any ideal A. Therefore N(〈6〉) =
N(N(〈0〉)) = N(〈0〉) = 〈6〉.

p 271, #52 Let I = 〈1− i〉. We start by noting that 2i = −(−2i) = −(1− i)2 ∈ I. GIven
x + iy ∈ Z[i], write x + y = 2k + r where r = 0 or 1. Then

(x + iy) + I = (x(1− i) + (x + y)i) + I = (x + y)i + I = (k(2i) + ri) + I = ri + I.

Hence, there are at most two cosets in Z[i]/I: I and i + I. It is easy to verify that i 6∈ I
and therefore that i+ I 6= I. Hence, Z[i]/I has exactly two elements. Since the only nonzero
element is i + I and

(i + I)2 = i2 + I = −1 + I = (1− 2) + I = 1 + I

(as 2 = −i(2i) ∈ I) we conclude that Z[i]/I is a field with two elements.

p 271, #56 We first prove that I is indeed maximal. Let J be an ideal in R with I $ J .
Then J must contain an element x ∈ R, x 6∈ I. By hypothesis, x must be a unit in R. Since
J is an ideal containing a unit, we have J = R. Thus, I is maximal.

Now we show that I is the only maximal ideal. Let J be a maximal ideal in R and let
x ∈ J . If x 6∈ I then, again using the hypothesis, x must be a unit in R. This would imply
that J = R, which contradicts the fact that J is maximal. Hence, x ∈ I. That is, we have



shown that J ⊂ I. Since J is maximal and I 6= R, we must have J = I. That is, if J is a
maximal ideal in R then J = I. Hence, I is the only maximal ideal in R.

A commutative ring with a unique maximal ideal is called a local ring.


