
Homework #4 Solutions

p 286, #8 Let φ : Zn → Zn be a ring homomorphism. Let a = φ(1). Then for any
0 6= r ∈ Zn = {1, 2, . . . , n− 1} we have

φ(r) = φ(1 + 1 + · · ·+ 1︸ ︷︷ ︸
r times

) = φ(1) + φ(1) + · · ·+ φ(1)︸ ︷︷ ︸
r times

= r · φ(1) = r · a = ra mod n.

Since
a = φ(1) = φ(1 · 1) = φ(1)φ(1) = a2

we’re finished.

p 286, #10 Let I = 〈x2 +1〉 and let f(x) ∈ Z3[x]. By including zero coefficients if necessary
we can write

f(x) =
n∑

i=0

a2ix
2i +

m∑
j=0

a2j+1x
2j+1,

for some ai ∈ Z3, i.e. we can write f(x) as the sum of its even degree and odd degree terms.
In Z3[x]/I we have x2 + I = −1 + I so that

f(x) + I =
n∑

i=0

(a2i + I)(x2i + I) +
m∑

j=0

(a2j+1 + I)(x2j+1 + I)

=
n∑

i=0

(a2i + I)(x2 + I)i +
m∑

j=0

(a2j+1 + I)(x + I)(x2 + I)j

=
n∑

i=0

(a2i + I)(−1 + I)i +
m∑

j=0

(a2j+1 + I)(x + I)(−1 + I)j

=

(
n∑

i=0

((−1)ia2i + I)

)
+ (x + I)

(
m∑

j=0

((−1)ja2j+1 + I)

)

=

(
n∑

i=0

(−1)ia2i + x
m∑

j=0

(−1)ja2j+1

)
+ I

or, more succinctly,
f(x) + I = a + bx + I

for some a, b ∈ Z3. Moreover, if a + bx + I = c + dx + I for some a, b, c, d ∈ Z3 then
(a−c)+(b−d)x ∈ I, which means that x2+1 divides the linear polynomial (a−c)+(b−d)x,
an obvious impossibility unless a− c = b− d = 0. That is, a + bx + I = c + dx + I implies
that a+ bx = c+ dx. Hence, every element in Z3[x]/I can be expressed uniquely in the form
a + bx + I, a, b ∈ Z3. We will use this fact below.



Now define φ : Z3[i] → Z3[x]/I by φ(a + bi) = a + bx + I. This is a homomorphism since
for any a, b, c, d ∈ Z3 we have

φ((a + bi)(c + di)) = φ((ac− bd) + (ad + bc)i)

= (ac− bd) + (ad + bc)x + I

= (a + bx + I)(c + dx + I)− (bd + I)(x2 + 1 + I)

= (a + bx + I)(c + dx + I)

= φ(a + bi)φ(c + di)

and

φ((a + bi) + (c + di)) = φ((a + c) + (b + d)i)

= (a + c) + (b + d)x + I

= (a + bx) + (c + dx) + I

= (a + bx + I) + (c + dx + I)

= φ(a + bi) + φ(c + di).

Moreover, the result of the preceding paragraph implies that this function is one-to-one and
onto, hence provides an isomorphism between Z3[i] and Z3[x]/I.

p 286, #12 Define φ : Z[
√

2] → H by

φ(a + bi) =

(
a 2b
b a

)
.

This is obviously one-to-one and onto so to prove it is an isomorphism it suffices to show
that it preserves addition and multiplication. Addition is easy: for any a, b, c, d ∈ Z

φ((a + b
√

2) + (c + d
√

2)) = φ((a + c) + (b + d)i) =

(
a + c 2(b + d)
b + d a + c

)
=

(
a 2b
b a

)
+

(
c 2d
d c

)
= φ(a + b

√
2) + φ(c + d

√
2).

Multiplication is no more difficult, just more interesting: for a, b, c, d ∈ Z we have

φ((a + b
√

2)(c + d
√

2)) = φ((ac + 2bd) + (ad + bc)
√

2) =

(
ac + 2bd 2(ad + bc)
ad + bc ac + 2bd

)
=

(
a 2b
b a

)(
c 2d
d c

)
= φ(a + bi)φ(c + di)

and we’re finished!

p 287, #18 Let φ : Zn → Zn be an isomorphism of rings. According to exercise 8 there
is an a ∈ Zn satisfying a2 = a so that φ(x) = ax for all x ∈ Zn. In order for φ to be an
isomorphism we must also have a = a · 1 = φ(1) = 1. Therefore φ(x) = x for all x, i.e. φ
must be the identity homomorphism.



p 287, #24 Let φ : R → S be a homomorphism of rings and let a ∈ R be an idempotent.
Then

φ(a)2 = φ(a2) = φ(a)

since a2 = a. Hence, φ(a) is an idempotent as well.

p 288, #36 Let φ : Q → Q be an homomorphism of rings. Since Q is a field and ker φ
is an ideal, we must have ker φ = {0} or ker φ = Q. That is, either φ is one-to-one or φ
maps every element to 0. Clearly there is no more work to be done in the latter case, so
we assume φ is one-to-one. The only idempotents in a domain are 0 and 1 so the previous
exercise implies that φ(1) is 0 or 1. But φ(0) = 0 and φ is one-to-one, so φ(1) = 1. It follows
that for any positive integer n we have

φ(n) = φ(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

) = φ(1) + φ(1) + · · ·+ φ(1)︸ ︷︷ ︸
n times

= n.

Moreover, 1 = φ(1) = φ((−1)2) = φ(−1)2 implies φ(−1) = ±1, so one-to-one-ness give
φ(−1) = −1. Hence, if n is a negative integer, n = −m with m > 0 and

φ(n) = φ(−1 ·m) = φ(−1)φ(m) = −1 ·m = n.

Therefore φ(n) = n for all n ∈ Z. If n is a nonzero integer then we also have

1 = φ(1) = φ

(
n · 1

n

)
= φ(n)φ

(
1

n

)
= nφ

(
1

n

)
from which it follows that φ(1/n) = 1/n. Finally, for any r ∈ Q we can write r = a/b with
a, b ∈ Z, b 6= 0 so that

φ(r) = φ
(a

b

)
= φ

(
a · 1

b

)
= φ(a)φ

(
1

b

)
= a · 1

b
=

a

b
= r.

Thus, if φ is a one-to-one homomorphism from Q to Q then φ is the identity map.

p 288, #38 We will need the following elementary lemma.

Lemma 1. Let p be a prime. Then the binomial coefficient
(

p
k

)
is divisible by p for all

1 ≤ k ≤ p− 1.

Proof. We know (
p

k

)
=

p!

(p− k)!k!
=

p(p− 1)!

(p− k)!k!

so that p divides (p − k)!k!
(

p
k

)
. Since p is prime this means that p must divide one of

2, 3, . . . , p − k or 2, 3, . . . , k or
(

p
k

)
. Since both k and p − k are strictly less than p the only

possibility is the last, i.e. p must divide
(

p
k

)
.

We now complete the exercise. Let R be a commutative ring with prime characteristic p
and define φ : R → R by φ(x) = xp. For any x, y ∈ R we have

φ(xy) = (xy)p = xpyp = φ(x)φ(y)



and

φ(x + y) = (x + y)p =

p∑
k=0

(
p

k

)
xkyp−k = xp + yp = φ(x) + φ(y).

The middle terms in the last expression vanish because, according to the lemma, all the
binomial coefficients are divisible by p, the characteristic of R. Hence, φ is a homomorphism.
This homomorphism figures prominently in the Galois theory of finite fields.

p 288, #40 Let F be a field, R be a ring and φ : F → R be an onto homomorphism.
According to the first isomorphism theorem F/ ker φ ∼= R. If R has more than one element
then we cannot have ker φ = F . However, since the kernel is an ideal and F is a field, the
only other option we have is ker φ = {0}. Hence, φ is also one-to-one and is therefore an
isomorphism.

p 288, #46 Let φ : R → R be an isomorphism of rings. We can argue exactly as in Exercise
36 to conclude that φ(r) = r for all r ∈ Q.1 Let x, y ∈ R with x < y. Then y − x > 0 so
there is a z ∈ R+ so that x− y = z2. Then

φ(y)− φ(x) = φ(y − x) = φ(z2) = φ(z)2 > 0

since φ(z) 6= 0 as φ is one-to-one. That is, if x < y then φ(x) < φ(y), i.e. φ preserves the
natural order on R. Let x ∈ R and suppose that x < φ(x). Since Q is dense in R we can
find an r ∈ Q with x < r < φ(x). But then φ(x) < φ(r) = r < φ(x), an impossibility. We
have a similar contradiction if x > φ(x) and so we conclude that φ(x) = x. Since x was an
arbitrary element of R we conclude that φ is the identity map.

p 289, #60 a. Let

(
a b
b a

)
,

(
c d
d c

)
∈ R. Then

φ

((
a b
b a

)
+

(
c d
d c

))
= φ

((
a + c b + d
b + d a + c

))
= (a + c)− (b + d)

= (a− b) + (c− d) = φ

((
a b
b a

))
+ φ

((
c d
d c

))
and

φ

((
a b
b a

)(
c d
d c

))
= φ

((
ac + bd ad + bc
ad + bc ac + bd

))
= (ac + bd)− (ad + bc)

= (a− b)(c− d) = φ

((
a b
b a

))
φ

((
c d
d c

))
proving that φ is a homomorphism.

1We have seen that any field of characteristic 0 contains Q as a subfield and that any field of characteristic p contains Zp

as a subfield. In each case, these fields are called the prime subfields and it is a general fact that any automorphism of a field
must fix its prime subfield element-wise.



b.

(
a b
b a

)
∈ R is in the kernel of φ if and only if a− b = 0 or a = b. Thus

ker φ =

{(
a a
a a

) ∣∣∣∣ a ∈ Z
}

.

c. Since φ : R → Z is a homomorphism and is clearly onto, the first isomorphism theorem
tells us that R/ ker φ ∼= Z.

d. Since R is a commutative ring with identity and R/ ker φ ∼= Z is an integral domain,
we can apply Theorem 14.3 to conclude that ker φ is indeed a prime ideal.

e. Since R is a commutative ring with identity and R/ ker φ ∼= Z is not a field, we can
apply Theorem 14.4 to conclude that ker φ is not a maximal ideal.


