Homework #4 Solutions

p 286, #8 Let ¢ : Z, — Z, be a ring homomorphism. Let a = ¢(1). Then for any
0#reZ,={1,2,...,n—1} we have

gb(r):¢(\1+1+---+1/):?(1)+¢(1)+-~-+¢(1)}=r-¢(1):r-a:mmodn.

Since
a=¢(1)=¢(1-1) = ¢(1)p(1) = a”

we’re finished.

p 286, #10 Let I = (2 +1) and let f(z) € Zs3[z]. By including zero coefficients if necessary
we can write

n m
f(z) = Z agz® + Z a1z,
i=0 =0

for some a; € Z3, i.e. we can write f(z) as the sum of its even degree and odd degree terms.
In Z3[x]/I we have 2*> + I = —1 + I so that

n

f@)+1 = 3o+ D™ + 1)+ 3 (agp + D 1)

=0 J

= ) (ay+ (=" + 1)+

NE

(agjr1 + I)(x + I)(2® 4+ I)

= i(a% +I)(-1+1) + i(ang + (x4 1) (-1+ 1)
= (Z((—wa% + 1)) +(z+1) (Z((—DJ’%H + 1))
= (Z(—l)lagl +xZ(—1)ja2j+1) —|—[

or, more succinctly,
flx)+I=a+bx+1

for some a,b € Zs. Moreover, if a + bx + 1 = ¢ + dx + I for some a,b,c,d € Zs then
(a—c)+(b—d)x € I, which means that 2%+ 1 divides the linear polynomial (a —c)+ (b—d)z,
an obvious impossibility unless a — ¢ =b—d = 0. That is, a + bx + I = ¢+ dx + I implies
that a + bx = ¢+ dz. Hence, every element in Zg[z|/I can be expressed uniquely in the form
a+bxr+1,abe Zs. We will use this fact below.



Now define ¢ : Zs[i] — Zs[x]/I by ¢(a + bi) = a + bx + I. This is a homomorphism since
for any a, b, c,d € Z3 we have

o((a+bi)(c+di)) = ¢((ac—bd) + (ad + be)i)
= (ac—bd) + (ad + bc)x + I
= (a+br+D(c+dr+1)—(bd+I)(2>+1+1)
= (a+bx+1I)(c+dz+1)
d(a + bi)d(c + di)

and

d((a+bi)+ (c+di)) = é((a+c)+ (b+d)i)
= (a+c)+(b+d)xr+1
(a+bx)+ (c+dx)+1
(a+br+1)+ (c+dx+1)
= o(a+bi) + ¢(c+ di).

Moreover, the result of the preceding paragraph implies that this function is one-to-one and
onto, hence provides an isomorphism between Zs[i] and Zs[z]/I.

p 286, #12 Define ¢ : Z[v/2] — H by
o(a + bi) = ( . >

a

This is obviously one-to-one and onto so to prove it is an isomorphism it suffices to show
that it preserves addition and multiplication. Addition is easy: for any a,b,c,d € 7Z

a+c 2(b+d) )

o((a+bvV2) + (c+dV2)) = ¢((a—|—c)—|—(b+d)z‘):(b+d N

_ (g 2;)+(; Qj)zd)(ﬁm)m(cm\/@y

Multiplication is no more difficult, just more interesting: for a,b, c,d € Z we have

o((a+bvV2)(c+dv2)) = o¢((ac+ 2bd) + (ad + be)V/2) = ( a(;d—:-zlfg 25?1—’_25? )

_ <Z 2;’)(; 26d>—¢(a+bi)¢(c+di)

and we’re finished!

p 287, #18 Let ¢ : Z, — Z, be an isomorphism of rings. According to exercise 8 there
is an a € Z, satisfying a®> = a so that ¢(z) = az for all x € Z,. In order for ¢ to be an
isomorphism we must also have a = a -1 = ¢(1) = 1. Therefore ¢(z) = x for all x, ie. ¢
must be the identity homomorphism.



p 287, #24 Let ¢ : R — S be a homomorphism of rings and let a« € R be an idempotent.
Then
¢(a)® = ¢(a*) = é(a)

since a? = a. Hence, ¢(a) is an idempotent as well.

p 288, #36 Let ¢ : Q — Q be an homomorphism of rings. Since Q is a field and ker ¢
is an ideal, we must have ker ¢ = {0} or ker¢ = Q. That is, either ¢ is one-to-one or ¢
maps every element to 0. Clearly there is no more work to be done in the latter case, so
we assume ¢ is one-to-one. The only idempotents in a domain are 0 and 1 so the previous
exercise implies that ¢(1) is 0 or 1. But ¢(0) = 0 and ¢ is one-to-one, so ¢(1) = 1. It follows
that for any positive integer n we have

o) =¢(lt 1+ +1)=0(1)+¢(1)+ - +¢(1) =n.

-~

n times n times
Moreover, 1 = ¢(1) = ¢((—1)?) = ¢(—1)? implies ¢(—1) = +1, so one-to-one-ness give
¢(—1) = —1. Hence, if n is a negative integer, n = —m with m > 0 and

6(n) = 9(~1-m) = $(~1)$(m) = ~1-m = n.

Therefore ¢p(n) = n for all n € Z. If n is a nonzero integer then we also have

=00 =6 (7] =otoo (1) =00 ()

from which it follows that ¢(1/n) = 1/n. Finally, for any r € Q we can write r = a/b with
a,b € Z, b # 0 so that

¢<r>=¢(%)=¢(a%):gb(a)gf)(%):a.%:%:r,

Thus, if ¢ is a one-to-one homomorphism from Q to Q then ¢ is the identity map.

p 288, #38 We will need the following elementary lemma.

Lemma 1. Let p be a prime. Then the binomial coefficient (z) 1s divisible by p for all
1<k<p-1.

Proof. We know

p\___p _ plp=1)
k (p—FKk)k!  (p—Ek)k!
so that p divides (p — k:)!k‘!(i). Since p is prime this means that p must divide one of

2,3,...,p—kor23,... . kor (Z) Since both k and p — k are strictly less than p the only
possibility is the last, i.e. p must divide (i) O

We now complete the exercise. Let R be a commutative ring with prime characteristic p
and define ¢ : R — R by ¢(x) = 2P. For any z,y € R we have

Pp(zy) = (zy)’ = 2"y’ = d(x)9(y)



and
Slx+y)=(x+yP =) (i) ey E = 2P P = o(x) + oly).

The middle terms in the last expression vanish because, according to the lemma, all the
binomial coefficients are divisible by p, the characteristic of R. Hence, ¢ is a homomorphism.
This homomorphism figures prominently in the Galois theory of finite fields.

p 288, #40 Let F be a field, R be a ring and ¢ : F' — R be an onto homomorphism.
According to the first isomorphism theorem F'/ker¢ = R. If R has more than one element
then we cannot have ker ¢ = F. However, since the kernel is an ideal and F' is a field, the
only other option we have is ker ¢ = {0}. Hence, ¢ is also one-to-one and is therefore an
isomorphism.

p 288, #46 Let ¢ : R — R be an isomorphism of rings. We can argue exactly as in Exercise
36 to conclude that ¢(r) = r for all re Q! Let z,y € R with x <y. Then y — 2 > 0 so
there is a z € RT so that © — y = 2%. Then

Ay) — d(x) = ¢y — 7) = ¢(2*) = $(2)* > 0

since ¢(z) # 0 as ¢ is one-to-one. That is, if < y then ¢(z) < ¢(y), i.e. ¢ preserves the
natural order on R. Let z € R and suppose that x < ¢(z). Since Q is dense in R we can
find an r € Q with x < r < ¢(z). But then ¢(x) < ¢(r) = r < ¢(z), an impossibility. We
have a similar contradiction if x > ¢(z) and so we conclude that ¢(z) = z. Since z was an
arbitrary element of R we conclude that ¢ is the identity map.

p 289, #60 a. Let(z Z)(; Ccl)eR. Then

o((5 0 ) (5 0)) = o(aattl aths))=toerm—im
(3 D)

proving that ¢ is a homomorphism.

IWe have seen that any field of characteristic O contains Q as a subfield and that any field of characteristic p contains Z,
as a subfield. In each case, these fields are called the prime subfields and it is a general fact that any automorphism of a field
must fix its prime subfield element-wise.



b. (a 2)ERisinthekernelofgbifandonlyifa—b:Oora:b. Thus

b
ker¢:{(g Z) aEZ}.

c. Since ¢ : R — 7Z is a homomorphism and is clearly onto, the first isomorphism theorem
tells us that R/ ker ¢ = Z.

d. Since R is a commutative ring with identity and R/ker ¢ = Z is an integral domain,
we can apply Theorem 14.3 to conclude that ker ¢ is indeed a prime ideal.

e. Since R is a commutative ring with identity and R/ker ¢ = 7Z is not a field, we can
apply Theorem 14.4 to conclude that ker ¢ is not a maximal ideal.




