
Homework #5 Solutions

p 298, #4 Case 1: charR = 0. In this case, given any n ∈ Z+ there is an r ∈ R so that
n · r 6= 0. However, since R is a subring of R[x], these elements suffice to show that there is
no n ∈ Z+ so that n · f = 0 for all f ∈ R[x]. That is, charR[x] = 0 = charR.

Case 2: charR 6= 0. Let charR = n ∈ Z+ and f(x) = amxm +am−1x
m−2 + · · · a0 ∈ R[x].

Then we have n · ai = 0 for i = 1, 2, . . . ,m and so

n · f(x) = n · amxm + n · am−1x
m−2 + · · ·n · a0 = 0xm + 0xm−2 + · · · 0 = 0

proving that charR[x] ≤ n. However, by the definition of characteristic, given m ∈ Z+ with
m < n there is an r ∈ R so that m · r 6= 0. But R is a subring of R[x] so, as above,
these elements suffice to show that the characteristic of R[x] cannot be less than n. Hence,
charR[x] = n = charR.

p 299, #12 We perform long division, remembering to reduce our coefficients mod 7 at
each stage.

5x2 + 6x + 6

3x + 2
)

x3 + 2x + 4

x3 + 3x2

4x2 + 2x + 4

4x2 + 5x

4x + 4

4x + 5

6

The quotient is therefore 5x2 + 6x + 6 and the remainder is 6.

p 299, #16 Let R be a ring with zero divisors. Then there is a nonzero a ∈ R so that ab = 0
for some nonzero b ∈ R. Let f(x) = ax ∈ R[x]. Since a 6= 0, f(x) has degree 1. However,
f(b) = ab = 0 = f(0) so that both b and 0 are roots of f(x). As b 6= 0, this disproves the
statement in question.

p 299, #20 Let h(x) = f(x)−g(x) ∈ F [x]. Assume that h(x) 6= 0 and let deg h(x) = n ≥ 0.
Then n+1 ∈ Z+ and so according to our hypothesis we can find distinct a1, a2, . . . , an+1 ∈ F
so that f(ai) = g(ai) for all i. But then h(ai) = f(ai)− g(ai) = 0 for i = 1, 2 . . . , n+1. That
is, h(x) has degree n but at least n + 1 roots in F , contradicting Corollary 3 to Theorem
16.2. Having reached a contradiction we conclude that our original assumption is false, i.e.
that we must have f(x)− g(x) = h(x) = 0. That is, f(x) = g(x) as desired.



p 299, #24 Let k ≥ 1 be the multiplicity of the root a of f(x). Then, by definition, we
can write f(x) = (x − a)kg(x) for some g(x) ∈ R[x]. Differentiating we obtain f ′(x) =
k(x− a)k−1g(x) + (x− a)kg′(x). If k > 1 then k − 1 > 0 and so

f ′(a) = k(a− a)k−1g(x) + (a− a)kg′(a) = 0 + 0 = 0

which contradicts our hypothesis. Thus it must be the case that k = 1, as claimed.

p 300, #26 Let D be an integral domain and let f(x) ∈ D[x] be nonzero. Let n = deg f(x)
and suppose that f(x) has m roots (counting multiplicities) in D. Let F denote the quotient
field of D. Then D is a subring of F and so D[x] is a subring of F [x]. Let k be the number of
roots of f(x) (counting multiplicities) in F . Then k ≥ m , and Corollary 3 gives n ≥ k ≥ m.
That is, the number of roots of f(x) in D cannot exceed the degree of f(x).

p 300, #30 Let h(x) = x(x − 1)(x − 2) = x3 − x ∈ Z3[x]. Clearly h(a) = 0 for all a ∈ Z3.
Moreover, for any g(x) ∈ F [x], f(x) = g(x)h(x) has the same property. Since there are
infinitely many choices for g(x) and F [x] is an integral domain, there are infinitely many
such polynomials f(x).

p 301, #42 I is an ideal in F [x]: I is nonempty since the zero polynomial obviously
belongs to I. Let f(x), g(x) ∈ I and h(x) ∈ F [x]. Then for any a ∈ F we have

f(a)− g(a) = 0− 0 = 0

h(a)f(a) = h(a) · 0 = 0

proving that f(x) − g(x), h(x)f(x) ∈ I. Since F [x] is commutative this proves that I is an
ideal.

Now suppose that F is finite of order n. According to exercise 54 in chapter 13, an−1 = 1
for all nonzero a ∈ F . It easily follows that an = a for all a ∈ F and hence that every
element in F is a root of f(x) = xn − x. Thus f(x) ∈ I and, as I is an ideal, 〈f(x)〉 ⊂ I.
However, since F [x] is an infinite domain, 〈f(x)〉 is also infinite, which implies that I is
infinite as well.1

If F is infinite then any element in I has infinitely many roots. Arguing as in exercise 20,
we find that the only such polynomial is f(x) = 0 and hence I = {0}.

p 301, #44 We argue by contradiction. That is, we assume that there is such an element
in F (x), i.e. an r(x) ∈ F (x) so that r(x)2 = x. By definition of the quotient field, we must
have r(x) = f(x)/g(x) for some f(x), g(x) ∈ F (x), g(x) 6= 0. Therefore, we have

x = r(x)2 =
f(x)2

g(x)2
.

Cross-multiplying gives xg(x)2 = f(x)2. Since x, g(x) 6= 0 we see that f(x) 6= 0 and so we
may take the degree of both sides. Using the fact that deg a(x)b(x) = deg a(x) + deg b(x)

1It is not hard to show that, in fact, I = 〈xn − x〉 in this case. This is left as an additional exercise.



for all a(x), b(x) ∈ F [x] we immediately find that

1 + 2 deg g(x) = 2 deg f(x)

which is impossible since both deg g(x) and deg f(x) are integers. Having reached a con-
tradiction we conclude that our assumption that r(x) exists is false, and conclude therefore
that no such r(x) exists.

p 301, #48 According to the division algorithm

x51 = q(x)(x + 4) + r(x)

where r(x) = 0 or deg r(x) < deg(x + 4) = 1. That is, r(x) must be a constant r ∈ Z7.
Substituting 3 for x we obtain

351 = q(3)(3 + 4) + r = r

in Z7. Since a7 = a for all a ∈ Z7 we have

r = 351 = 34932 = (37)732 = 3732 = 3 · 32 = 33 = 27 = 6

in Z7.


