p 298, #4 Case 1: charR = 0. In this case, given any $n \in \mathbb{Z}^+$ there is an $r \in R$ so that $n \cdot r \neq 0$. However, since R is a subring of R[x], these elements suffice to show that there is no $n \in \mathbb{Z}^+$ so that $n \cdot f = 0$ for all $f \in R[x]$. That is, charR[x] = 0 = charR.

Case 2: char $R \neq 0$. Let char $R = n \in \mathbb{Z}^+$ and $f(x) = a_m x^m + a_{m-1} x^{m-2} + \cdots + a_0 \in R[x]$. Then we have $n \cdot a_i = 0$ for $i = 1, 2, \dots, m$ and so

$$n \cdot f(x) = n \cdot a_m x^m + n \cdot a_{m-1} x^{m-2} + \dots + n \cdot a_0 = 0 x^m + 0 x^{m-2} + \dots = 0$$

proving that $\operatorname{char} R[x] \leq n$. However, by the definition of characteristic, given $m \in \mathbb{Z}^+$ with m < n there is an $r \in R$ so that $m \cdot r \neq 0$. But R is a subring of R[x] so, as above, these elements suffice to show that the characteristic of R[x] cannot be less than n. Hence, $\operatorname{char} R[x] = n = \operatorname{char} R$.

p 299, #12 We perform long division, remembering to reduce our coefficients mod 7 at each stage.

$$5x^{2} + 6x + 6$$

$$3x + 2) x^{3} + 2x + 4$$

$$x^{3} + 3x^{2}$$

$$4x^{2} + 2x + 4$$

$$4x^{2} + 5x$$

$$4x + 4$$

$$4x + 5$$

$$6$$

The quotient is therefore $5x^2 + 6x + 6$ and the remainder is 6.

p 299, #16 Let *R* be a ring with zero divisors. Then there is a nonzero $a \in R$ so that ab = 0 for some nonzero $b \in R$. Let $f(x) = ax \in R[x]$. Since $a \neq 0$, f(x) has degree 1. However, f(b) = ab = 0 = f(0) so that both *b* and 0 are roots of f(x). As $b \neq 0$, this disproves the statement in question.

p 299, #20 Let $h(x) = f(x) - g(x) \in F[x]$. Assume that $h(x) \neq 0$ and let deg $h(x) = n \ge 0$. Then $n+1 \in \mathbb{Z}^+$ and so according to our hypothesis we can find distinct $a_1, a_2, \ldots, a_{n+1} \in F$ so that $f(a_i) = g(a_i)$ for all *i*. But then $h(a_i) = f(a_i) - g(a_i) = 0$ for $i = 1, 2, \ldots, n+1$. That is, h(x) has degree *n* but at least n+1 roots in *F*, contradicting Corollary 3 to Theorem 16.2. Having reached a contradiction we conclude that our original assumption is false, i.e. that we must have f(x) - g(x) = h(x) = 0. That is, f(x) = g(x) as desired. **p 299,** #24 Let $k \ge 1$ be the multiplicity of the root a of f(x). Then, by definition, we can write $f(x) = (x - a)^k g(x)$ for some $g(x) \in \mathbb{R}[x]$. Differentiating we obtain $f'(x) = k(x - a)^{k-1}g(x) + (x - a)^k g'(x)$. If k > 1 then k - 1 > 0 and so

$$f'(a) = k(a-a)^{k-1}g(x) + (a-a)^k g'(a) = 0 + 0 = 0$$

which contradicts our hypothesis. Thus it must be the case that k = 1, as claimed.

p 300, #26 Let *D* be an integral domain and let $f(x) \in D[x]$ be nonzero. Let $n = \deg f(x)$ and suppose that f(x) has *m* roots (counting multiplicities) in *D*. Let *F* denote the quotient field of *D*. Then *D* is a subring of *F* and so D[x] is a subring of F[x]. Let *k* be the number of roots of f(x) (counting multiplicities) in *F*. Then $k \ge m$, and Corollary 3 gives $n \ge k \ge m$. That is, the number of roots of f(x) in *D* cannot exceed the degree of f(x).

p 300, #30 Let $h(x) = x(x-1)(x-2) = x^3 - x \in \mathbb{Z}_3[x]$. Clearly h(a) = 0 for all $a \in \mathbb{Z}_3$. Moreover, for any $g(x) \in F[x]$, f(x) = g(x)h(x) has the same property. Since there are infinitely many choices for g(x) and F[x] is an integral domain, there are infinitely many such polynomials f(x).

p 301, #42 *I* is an ideal in *F*[*x*]: *I* is nonempty since the zero polynomial obviously belongs to *I*. Let $f(x), g(x) \in I$ and $h(x) \in F[x]$. Then for any $a \in F$ we have

$$f(a) - g(a) = 0 - 0 = 0$$

$$h(a)f(a) = h(a) \cdot 0 = 0$$

proving that $f(x) - g(x), h(x)f(x) \in I$. Since F[x] is commutative this proves that I is an ideal.

Now suppose that F is finite of order n. According to exercise 54 in chapter 13, $a^{n-1} = 1$ for all nonzero $a \in F$. It easily follows that $a^n = a$ for all $a \in F$ and hence that every element in F is a root of $f(x) = x^n - x$. Thus $f(x) \in I$ and, as I is an ideal, $\langle f(x) \rangle \subset I$. However, since F[x] is an infinite domain, $\langle f(x) \rangle$ is also infinite, which implies that I is infinite as well.¹

If F is infinite then any element in I has infinitely many roots. Arguing as in exercise 20, we find that the only such polynomial is f(x) = 0 and hence $I = \{0\}$.

p 301, #44 We argue by contradiction. That is, we assume that there *is* such an element in F(x), i.e. an $r(x) \in F(x)$ so that $r(x)^2 = x$. By definition of the quotient field, we must have r(x) = f(x)/g(x) for some $f(x), g(x) \in F(x), g(x) \neq 0$. Therefore, we have

$$x = r(x)^2 = \frac{f(x)^2}{g(x)^2}.$$

Cross-multiplying gives $xg(x)^2 = f(x)^2$. Since $x, g(x) \neq 0$ we see that $f(x) \neq 0$ and so we may take the degree of both sides. Using the fact that $\deg a(x)b(x) = \deg a(x) + \deg b(x)$

¹It is not hard to show that, in fact, $I = \langle x^n - x \rangle$ in this case. This is left as an additional exercise.

for all $a(x), b(x) \in F[x]$ we immediately find that

$$1 + 2\deg g(x) = 2\deg f(x)$$

which is impossible since both deg g(x) and deg f(x) are integers. Having reached a contradiction we conclude that our assumption that r(x) exists is false, and conclude therefore that no such r(x) exists.

p 301, #48 According to the division algorithm

$$x^{51} = q(x)(x+4) + r(x)$$

where r(x) = 0 or deg r(x) < deg(x + 4) = 1. That is, r(x) must be a constant $r \in \mathbb{Z}_7$. Substituting 3 for x we obtain

$$3^{51} = q(3)(3+4) + r = r$$

in \mathbb{Z}_7 . Since $a^7 = a$ for all $a \in \mathbb{Z}_7$ we have

$$r = 3^{51} = 3^{49}3^2 = (3^7)^7 3^2 = 3^7 3^2 = 3 \cdot 3^2 = 3^3 = 27 = 6$$

in \mathbb{Z}_7 .