Homework #5 Solutions

p 298, #4 Case 1: charR = 0. In this case, given any n € Z™" there is an r € R so that
n-r # 0. However, since R is a subring of R[z], these elements suffice to show that there is
non € Z* so that n- f =0 for all f € R[x]. That is, charR[z] = 0 = charR.

Case 2: charR # 0. Let charR =n € Z* and f(2) = apa™ + ap12™ 2+ - ay € R|x].
Then we have n-a; =0 for i =1,2,...,m and so

n-f(@)=n-anx™ +n-ap ™2+ n-ag=02"+02"2+.--0=0

proving that charR[x] < n. However, by the definition of characteristic, given m € Z* with
m < n there is an r € R so that m -r # 0. But R is a subring of R[z] so, as above,
these elements suffice to show that the characteristic of R[x] cannot be less than n. Hence,
charR[z] = n = charR.

p 299, #12 We perform long division, remembering to reduce our coefficients mod 7 at
each stage.

522+ 6x +6

3:c+2) 23+ 2r+4
% + 322

4o +2x + 4
4% + bz

4z + 4
4 + 5

6

The quotient is therefore 522 4+ 6x + 6 and the remainder is 6.

p 299, #16 Let R be a ring with zero divisors. Then there is a nonzero a € R so that ab =0
for some nonzero b € R. Let f(x) = ax € R[z]. Since a # 0, f(z) has degree 1. However,
f(b) = ab =0 = f(0) so that both b and 0 are roots of f(x). As b # 0, this disproves the
statement in question.

p 299, #20 Let h(x) = f(x)—g(x) € F[x]. Assume that h(x) # 0 and let deg h(z) =n > 0.
Then n+1 € Z* and so according to our hypothesis we can find distinct a1, as, ..., a,q € F
so that f(a;) = g(a;) for all i. But then h(a;) = f(a;) —g(a;) =0fori=1,2...,n+1. That
is, h(x) has degree n but at least n + 1 roots in F', contradicting Corollary 3 to Theorem
16.2. Having reached a contradiction we conclude that our original assumption is false, i.e.

that we must have f(x) — g(z) = h(z) = 0. That is, f(x) = g(z) as desired.



p 299, #24 Let k£ > 1 be the multiplicity of the root a of f(x). Then, by definition, we
can write f(z) = (z — a)*g(z) for some g(z) € R[z]. Differentiating we obtain f'(z) =
k(x —a)*tg(z) + (x — a)*¢'(z). If k > 1 then k — 1 > 0 and so

f'(a) = k(a —a)*g(z) + (a — a)*¢'(a) =0+ 0 =0

which contradicts our hypothesis. Thus it must be the case that k = 1, as claimed.

p 300, #26 Let D be an integral domain and let f(z) € D|x] be nonzero. Let n = deg f(z)
and suppose that f(z) has m roots (counting multiplicities) in D. Let F' denote the quotient
field of D. Then D is a subring of F' and so D[x] is a subring of F[z]. Let k be the number of
roots of f(x) (counting multiplicities) in F'. Then k > m , and Corollary 3 gives n > k > m.
That is, the number of roots of f(z) in D cannot exceed the degree of f(x).

p 300, #30 Let h(z) = z(x — 1)(z — 2) = 2® — x € Z3[z]. Clearly h(a) =0 for all a € Zj.
Moreover, for any g(x) € F[z], f(x) = g(x)h(z) has the same property. Since there are
infinitely many choices for g(z) and F|z] is an integral domain, there are infinitely many
such polynomials f(x).

p 301, #42 [ is an ideal in Flz]: [ is nonempty since the zero polynomial obviously
belongs to I. Let f(z),g(z) € I and h(z) € Flx]. Then for any a € F' we have

fla)—gla) = 0-0=0
h(a)f(a) = h(a) 0=0

proving that f(z) — g(z), h(x)f(x) € I. Since F[z| is commutative this proves that I is an
ideal.

Now suppose that F is finite of order n. According to exercise 54 in chapter 13, a" ! =1
for all nonzero a € F. It easily follows that a” = a for all a € F and hence that every
element in F' is a root of f(x) = 2™ —x. Thus f(z) € I and, as I is an ideal, (f(z)) C I.
However, since F[z] is an infinite domain, (f(z)) is also infinite, which implies that I is
infinite as well.!

If F is infinite then any element in I has infinitely many roots. Arguing as in exercise 20,
we find that the only such polynomial is f(x) = 0 and hence I = {0}.

p 301, #44 We argue by contradiction. That is, we assume that there is such an element
in F(z), i.e. an r(z) € F(x) so that r(x)? = x. By definition of the quotient field, we must
have r(x) = f(x)/g(x) for some f(x),g(x) € F(z), g(x) # 0. Therefore, we have

_rlnz:f(x)Q
z =) g(x)?

Cross-multiplying gives zg(x)? = f(z)?. Since z, g(x) # 0 we see that f(z) # 0 and so we
may take the degree of both sides. Using the fact that dega(x)b(z) = dega(zr) + degb(z)

Tt is not hard to show that, in fact, I = (™ — ) in this case. This is left as an additional exercise.



for all a(x),b(x) € F[z] we immediately find that
1+2degg(z) = 2deg f(z)

which is impossible since both degg(z) and deg f(x) are integers. Having reached a con-
tradiction we conclude that our assumption that r(z) exists is false, and conclude therefore
that no such r(z) exists.

p 301, #48 According to the division algorithm
2 = gq(z)(x +4) +r(2)

where r(x) = 0 or degr(z) < deg(z +4) = 1. That is, r(z) must be a constant r € Zj.
Substituting 3 for x we obtain

B =qB)(B3+4)+r=r

" =g for all a € Z; we have

in Zr. Since a
r=23"=3932=(3")"32=3"32=3.32=3"=27=6

in Z7.



