Homework \#5 Solutions

p 298, \#4 Case 1: \quad char $R=0$. In this case, given any $n \in \mathbb{Z}^{+}$there is an $r \in R$ so that $n \cdot r \neq 0$. However, since R is a subring of $R[x]$, these elements suffice to show that there is no $n \in \mathbb{Z}^{+}$so that $n \cdot f=0$ for all $f \in R[x]$. That is, $\operatorname{char} R[x]=0=\operatorname{char} R$.

Case 2: $\quad \operatorname{char} R \neq 0$. Let $\operatorname{char} R=n \in \mathbb{Z}^{+}$and $f(x)=a_{m} x^{m}+a_{m-1} x^{m-2}+\cdots a_{0} \in R[x]$. Then we have $n \cdot a_{i}=0$ for $i=1,2, \ldots, m$ and so

$$
n \cdot f(x)=n \cdot a_{m} x^{m}+n \cdot a_{m-1} x^{m-2}+\cdots n \cdot a_{0}=0 x^{m}+0 x^{m-2}+\cdots 0=0
$$

proving that char $R[x] \leq n$. However, by the definition of characteristic, given $m \in \mathbb{Z}^{+}$with $m<n$ there is an $r \in R$ so that $m \cdot r \neq 0$. But R is a subring of $R[x]$ so, as above, these elements suffice to show that the characteristic of $R[x]$ cannot be less than n. Hence, $\operatorname{char} R[x]=n=\operatorname{char} R$.
p 299, \#12 We perform long division, remembering to reduce our coefficients mod 7 at each stage.

$$
\begin{array}{r}
5 x^{2}+6 x+6 \\
3 x+2 \begin{array}{r}
x^{3}+2 x+4 \\
x^{3}+3 x^{2} \\
\hline 4 x^{2}+2 x+4 \\
4 x^{2}+5 x \\
\hline 4 x+4 \\
4 x+5 \\
\hline 6
\end{array}
\end{array}
$$

The quotient is therefore $5 x^{2}+6 x+6$ and the remainder is 6 .
p 299, \#16 Let R be a ring with zero divisors. Then there is a nonzero $a \in R$ so that $a b=0$ for some nonzero $b \in R$. Let $f(x)=a x \in R[x]$. Since $a \neq 0, f(x)$ has degree 1. However, $f(b)=a b=0=f(0)$ so that both b and 0 are roots of $f(x)$. As $b \neq 0$, this disproves the statement in question.
p 299, \#20 Let $h(x)=f(x)-g(x) \in F[x]$. Assume that $h(x) \neq 0$ and let $\operatorname{deg} h(x)=n \geq 0$. Then $n+1 \in \mathbb{Z}^{+}$and so according to our hypothesis we can find distinct $a_{1}, a_{2}, \ldots, a_{n+1} \in F$ so that $f\left(a_{i}\right)=g\left(a_{i}\right)$ for all i. But then $h\left(a_{i}\right)=f\left(a_{i}\right)-g\left(a_{i}\right)=0$ for $i=1,2 \ldots, n+1$. That is, $h(x)$ has degree n but at least $n+1$ roots in F, contradicting Corollary 3 to Theorem 16.2. Having reached a contradiction we conclude that our original assumption is false, i.e. that we must have $f(x)-g(x)=h(x)=0$. That is, $f(x)=g(x)$ as desired.
p 299, $\# \mathbf{2 4}$ Let $k \geq 1$ be the multiplicity of the root a of $f(x)$. Then, by definition, we can write $f(x)=(x-a)^{k} g(x)$ for some $g(x) \in \mathbb{R}[x]$. Differentiating we obtain $f^{\prime}(x)=$ $k(x-a)^{k-1} g(x)+(x-a)^{k} g^{\prime}(x)$. If $k>1$ then $k-1>0$ and so

$$
f^{\prime}(a)=k(a-a)^{k-1} g(x)+(a-a)^{k} g^{\prime}(a)=0+0=0
$$

which contradicts our hypothesis. Thus it must be the case that $k=1$, as claimed.
p 300, \#26 Let D be an integral domain and let $f(x) \in D[x]$ be nonzero. Let $n=\operatorname{deg} f(x)$ and suppose that $f(x)$ has m roots (counting multiplicities) in D. Let F denote the quotient field of D. Then D is a subring of F and so $D[x]$ is a subring of $F[x]$. Let k be the number of roots of $f(x)$ (counting multiplicities) in F. Then $k \geq m$, and Corollary 3 gives $n \geq k \geq m$. That is, the number of roots of $f(x)$ in D cannot exceed the degree of $f(x)$.
p 300, $\# \mathbf{3 0}$ Let $h(x)=x(x-1)(x-2)=x^{3}-x \in \mathbb{Z}_{3}[x]$. Clearly $h(a)=0$ for all $a \in \mathbb{Z}_{3}$. Moreover, for any $g(x) \in F[x], f(x)=g(x) h(x)$ has the same property. Since there are infinitely many choices for $g(x)$ and $F[x]$ is an integral domain, there are infinitely many such polynomials $f(x)$.
p 301, \#42 I is an ideal in $F[x]$: I is nonempty since the zero polynomial obviously belongs to I. Let $f(x), g(x) \in I$ and $h(x) \in F[x]$. Then for any $a \in F$ we have

$$
\begin{aligned}
f(a)-g(a) & =0-0=0 \\
h(a) f(a) & =h(a) \cdot 0=0
\end{aligned}
$$

proving that $f(x)-g(x), h(x) f(x) \in I$. Since $F[x]$ is commutative this proves that I is an ideal.

Now suppose that F is finite of order n. According to exercise 54 in chapter $13, a^{n-1}=1$ for all nonzero $a \in F$. It easily follows that $a^{n}=a$ for all $a \in F$ and hence that every element in F is a root of $f(x)=x^{n}-x$. Thus $f(x) \in I$ and, as I is an ideal, $\langle f(x)\rangle \subset I$. However, since $F[x]$ is an infinite domain, $\langle f(x)\rangle$ is also infinite, which implies that I is infinite as well. ${ }^{1}$

If F is infinite then any element in I has infinitely many roots. Arguing as in exercise 20, we find that the only such polynomial is $f(x)=0$ and hence $I=\{0\}$.
p 301, \#44 We argue by contradiction. That is, we assume that there is such an element in $F(x)$, i.e. an $r(x) \in F(x)$ so that $r(x)^{2}=x$. By definition of the quotient field, we must have $r(x)=f(x) / g(x)$ for some $f(x), g(x) \in F(x), g(x) \neq 0$. Therefore, we have

$$
x=r(x)^{2}=\frac{f(x)^{2}}{g(x)^{2}} .
$$

Cross-multiplying gives $x g(x)^{2}=f(x)^{2}$. Since $x, g(x) \neq 0$ we see that $f(x) \neq 0$ and so we may take the degree of both sides. Using the fact that $\operatorname{deg} a(x) b(x)=\operatorname{deg} a(x)+\operatorname{deg} b(x)$

[^0]for all $a(x), b(x) \in F[x]$ we immediately find that
$$
1+2 \operatorname{deg} g(x)=2 \operatorname{deg} f(x)
$$
which is impossible since both $\operatorname{deg} g(x)$ and $\operatorname{deg} f(x)$ are integers. Having reached a contradiction we conclude that our assumption that $r(x)$ exists is false, and conclude therefore that no such $r(x)$ exists.
p 301, \#48 According to the division algorithm
$$
x^{51}=q(x)(x+4)+r(x)
$$
where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg}(x+4)=1$. That is, $r(x)$ must be a constant $r \in \mathbb{Z}_{7}$. Substituting 3 for x we obtain
$$
3^{51}=q(3)(3+4)+r=r
$$
in \mathbb{Z}_{7}. Since $a^{7}=a$ for all $a \in \mathbb{Z}_{7}$ we have
$$
r=3^{51}=3^{49} 3^{2}=\left(3^{7}\right)^{7} 3^{2}=3^{7} 3^{2}=3 \cdot 3^{2}=3^{3}=27=6
$$
in \mathbb{Z}_{7}.

[^0]: ${ }^{1}$ It is not hard to show that, in fact, $I=\left\langle x^{n}-x\right\rangle$ in this case. This is left as an additional exercise.

