Homework #6 Solutions

p 315, #4 Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$ and suppose that x - r divides f(x) for some $r \in \mathbb{Q}$. Then we must have f(r) = 0. We will use this fact to prove that in fact $r \in \mathbb{Z}$. If r = 0 then there is nothing to prove. So assume $r \neq 0$ and write r = a/b with $a, b \in \mathbb{Z}$, $b \neq 0$ and (a, b) = 1. Then

$$0 = f(r)$$

= $f(a/b)$
= $\left(\frac{a}{b}\right)^n + a_{n-1}\left(\frac{a}{b}\right)^{n-1} + \dots + a_1\left(\frac{a}{b}\right) + a_0.$

Multiplying both sides by b^n then yields

$$0 = a^{n} + a_{n-1}a^{n-1}b + a_{n-2}a^{n-2}b^{2} + \dots + a_{1}ab^{n-1} + a_{0}b^{n}$$

which is equivalent to

$$a^{n} = -(a_{n-1}a^{n-1}b + a_{n-2}a^{n-2}b^{2} + \dots + a_{1}ab^{n-1} + a_{0}b^{n})$$

= $-b(a_{n-1}a^{n-1} + a_{n-2}a^{n-2}b + \dots + a_{1}ab^{n-2} + a_{0}b^{n-1}).$

Since $a_{n-1}a^{n-1} + a_{n-2}a^{n-2}b + \cdots + a_1ab^{n-2} + a_0b^{n-1} \in \mathbb{Z}$, this implies that b divides a^n . Since (a, b) = 1, this can only occur if $b = \pm 1$. But then $r = a/b = \pm a \in \mathbb{Z}$, as claimed.

p 315, #6 If p is prime and $f(x) \in \mathbb{Z}_p[x]$ is irreducible then $\mathbb{Z}_p[x]/\langle f(x) \rangle$ is a field by Corollary 1 to Theorem 17.5, since \mathbb{Z}_p is a field. Moreover, we proved in class that since $\deg f(x) = n$ the each element of $\mathbb{Z}_p[x]/\langle f(x) \rangle$ can be expressed uniquely as $a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_0 + \langle f(x) \rangle$ for some $a_i \in F$. Since there are p choices for each coefficient a_i and n coefficients, there are exactly p^n such cosets. That is, $\mathbb{Z}_p[x]/\langle f(x) \rangle$ is a field with p^n elements.

p 316, #8 Let $f(x) = x^3 + 2x + 1 \in \mathbb{Z}_3[x]$. It is easy to show that f(x) has no roots in \mathbb{Z}_3 and as deg f(x) = 3, this implies f(x) is irreducible in $\mathbb{Z}_3[x]$. So according to Exercise #6, $\mathbb{Z}_3[x]/\langle x^3 + 2x + 1 \rangle$ is a field with $3^3 = 27$ elements.

p 316, #10

- **a.** $x^5 + 9x^4 + 12x^2 + 6$ is irreducible according Eisenstein's criterion with p = 3.
- **b.** Consider $x^4 + x + 1 \mod 2$. It is easy to see that this polynomial has no roots in \mathbb{Z}_2 , and so to prove irreducibility in \mathbb{Z}_2 it suffices to show it has no quadratic factors. The only quadratic polynomial in $\mathbb{Z}_2[x]$ that does not have a root in \mathbb{Z}_2 is $x^2 + x + 1$ which does not divide $x^4 + x + 1$ in $\mathbb{Z}_2[x]$, as is also easily checked. It follows that $x^4 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$ and so by the mod p test with p = 2 we conclude that $x^4 + x + 1$ is irreducible in $\mathbb{Q}[x]$.

- c. $x^4 + 3x^2 + 3$ is irreducible according to Eisenstein's criterion with p = 3.
- **d.** Consider $x^5 + 5x^2 + 1 \mod 2$, which is $x^5 + x^2 + 1$. It is easy to see that this polynomial has no roots in \mathbb{Z}_2 , and so to prove irreducibility in \mathbb{Z}_2 it again suffices to show it has no quadratic factors. The only quadratic polynomial in $\mathbb{Z}_2[x]$ that does not have a root in \mathbb{Z}_2 is $x^2 + x + 1$ which does not divide $x^5 + x^2 + 1$ in $\mathbb{Z}_2[x]$, as is also easily checked. It follows that $x^5 + x^2 + 1$ is irreducible in $\mathbb{Z}_2[x]$ and so by the mod p test with p = 2 we conclude that $x^5 + 5x^2 + 1$ is irreducible in $\mathbb{Q}[x]$.
- e. Let $f(x) = (5/2)x^5 + (9/2)x^4 + 15x^3 + (3/7)x^2 + 6x + 3/14$ and $g(x) = 35x^5 + 63x^4 + 210x^3 + 6x^2 + 84x + 3 = 14f(x)$. Since 14 is a unit in $\mathbb{Q}[x]$, f(x) is irreducible in $\mathbb{Q}[x]$ if and only if g(x) is, and the latter statement is true by Eisenstein's criterion with p = 3.

p 316, #12 Since it has degree 2, to show that $x^2 + x + 4$ is irreducible in $\mathbb{Z}_1 \mathbb{I}[x]$ it suffices to show it has no roots in \mathbb{Z}_{11} , as \mathbb{Z}_{11} is a field. This is straightforward and is left to the reader.

p 316, #16

a. Since \mathbb{Z}_p is a field, a polynomial of the form $x^2 + ax + b \in \mathbb{Z}_p[x]$ is reducible if and only if there exist $c, d \in \mathbb{Z}_{11}$ so that $x^2 + ax + b = (x + c)(x + d)$. There are $\binom{p}{2}$ such polynomials for which $c \neq d$ and p for which c = d. Therefore, there are exactly

$$\binom{p}{2} + p = \frac{p(p-1)}{2} + p = \frac{p(p+1)}{2}$$

reducible monic quadratic polynomials in $\mathbb{Z}_p[x]$. Since there are p^2 polynomials of the form $x^2 + ax + b$ and each one is either reducible or irreducible, we conclude there are

$$p^2 - \frac{p(p+1)}{2} = \frac{p(p-1)}{2}$$

irreducible monic degree 2 polynomials in $\mathbb{Z}_p[x]$.

b. If $f(x) \in \mathbb{Z}_p[x]$ is irreducible of degree 2, then f(x) = ag(x) for some $a \in F$, $a \neq 0$ and $g(x) \in F[x]$ irreducible, monic and of degree 2. There are p-1 choices for a and, by part (a), p(p-1)/2 choices for g(x). Therefore there are $p(p-1)^2/2$ irreducible quadratic polynomials in $\mathbb{Z}_p[x]$.

p 316, #24 Substituting all of the elements of \mathbb{Z}_7 into $3x^2 + x + 4$ we find that it has two roots: 4 and 5. The quadratic formula "predicts" the roots

$$\frac{-1 \pm \sqrt{-47}}{6} = 6(-1 \pm \sqrt{2}) = 1 \pm 6\sqrt{2}$$

since $6^{-1} = 6$ in \mathbb{Z}_7 and -47 = 2 in \mathbb{Z}_7 . Since $3^2 = 9 = 2$ in \mathbb{Z}_7 , we can take $\sqrt{2} = 3$ and so the two predicted roots are

$$1 \pm 6 \cdot 3 = 4,5$$

which agree with those found by substitution.

If we substitute all of the elements of \mathbb{Z}_5 into $2x^2 + x + 3$ we find no roots. The quadratic formula predicts the roots are

$$\frac{-1 \pm \sqrt{-23}}{4} = 4(4 + \sqrt{2}) = 1 + 4\sqrt{2}$$

since $4^{-1} = 4$ and -23 = 2 in \mathbb{Z}_5 . However, there is no element in \mathbb{Z}_5 whose square is 2, so $\sqrt{2}$ is not an element of \mathbb{Z}_5 . Consequently the roots predicted by the quadratic formula do not belong to \mathbb{Z}_5 , which is in agreement with the fact that there are no roots in \mathbb{Z}_5 .

It turns out that the quadratic formula *always* gives the roots of $ax^2 + bx + c \in F[x]$ for any field F, as long as we agree that if $b^2 - 4ac$ is not a square in F then we interpret the formula as yielding no roots. This is easily proven using the usual proof of the quadratic formula (i.e. completing the square).

p 317, #28 Let $f(x) \in \mathbb{Q}[x]$ be nonzero. Choose an $n \in \mathbb{Z}^+$ so that $g(x) = nf(x) \in \mathbb{Z}[x]$. Since $n \neq 0$ it is a unit in $\mathbb{Q}[x]$. So f(x) is irreducible in $\mathbb{Q}[x]$ if and only if g(x) is, and the latter's irreducibility can be tested using the mod p test.

p 317, #30 Let $f(x) = x^{p-1} - x^{p-2} + x^{p-3} - \cdots - x + 1$. If p = 2 then the polynomial in question is x - 1 which is obviously irreducible in $\mathbb{Q}[x]$. If p > 2 then it is odd and so

$$g(x) = f(-x) = x^{p-1} + x^{p-2} + x^{p-3} + \dots + x + 1$$

is the *p*th cyclotomic polynomial, which is irreducible according to the Corollary of Theorem 17.4. It follows that f(x) is irreducible, for if f(x) factored so too would g(x).

p 317, #32 Let $f(x), g(x) \in \mathbb{Z}[x]$ and suppose that $f(x)g(x) \in \langle x^2 + 1 \rangle$. Then there is an $h(x) \in \mathbb{Z}[x]$ so that $f(x)g(x) = (x^2 + 1)h(x)$. Since $x^2 + 1$ is primitive and irreducible in $\mathbb{Q}[x]$, it is also irreducible in $\mathbb{Z}[x]$. We apply Theorem 17.6 to write

$$f(x) = a_1 \cdots a_k p_1(x) \cdots p_l(x)$$

$$g(x) = b_1 \cdots b_m q_1(x) \cdots q_n(x)$$

$$h(x) = c_1 \cdots c_s r_1(x) \cdots r_t(x)$$

where the a_i, b_i and c_i are primes in \mathbb{Z} and the $p_i(x), q_i(x)$ and $r_i(x)$ are irreducible polynomials of positive degree in $\mathbb{Z}[x]$. Substituting these expressions into $f(x)g(x) = (x^2+1)h(x)$ and rearranging we obtain

$$a_1 \cdots a_k b_1 \cdots b_m p_1(x) \cdots p_l(x) q_1(x) \cdots q_n(x) = c_1 \cdots c_s r_1(x) \cdots r_t(x) (x^2 + 1).$$

Theorem 17.6 and the irreducibility of $x^2 + 1$ now imply that $x^2 + 1 = \pm p_i(x)$ for some *i* or $x^2 + 1 = \pm q_i(x)$ for some *i*. In the first case $x^2 + 1$ divides f(x) and in the second $x^2 + 1$ divides g(x). That is, either $f(x) \in \langle x^2 + 1 \rangle$ or $g(x) \in \langle x^2 + 1 \rangle$. Therefore $\langle x^2 + 1 \rangle$ is prime in $\mathbb{Z}[x]$.¹

¹Now that we know about UFD's we can actually dramatically simplify this proof: as above, $x^2 + 1$ is irreducible in $\mathbb{Z}[x]$; since $\mathbb{Z}[x]$ is a UFD, every irreducible element is also prime, so $\langle x^2 + 1 \rangle$ is a prime ideal.

Let $p \in \mathbb{Z}^+$ be any prime. We will show that $\langle x^2 + 1 \rangle$ is properly contained in $\langle x^2 + 1, p \rangle$ which is not equal to $\mathbb{Z}[x]$. This will prove that $\langle x^2 + 1 \rangle$ is not maximal. Since every nonzero element of $\langle x^2 + 1 \rangle$ has degree at least 2, $p \notin \langle x^2 + 1 \rangle$. This proves that $\langle x^2 + 1 \rangle$ is properly contained in $\langle x^2 + 1, p \rangle$. Now suppose, for the sake of contradiction, that $\langle x^2 + 1, p \rangle = \mathbb{Z}[x]$. Then there exist $f(x), g(x) \in \mathbb{Z}[x]$ so that $f(x)(x^2 + 1) + g(x)p = 1$. If we consider this equation mod p we obtain $\overline{f}(x)(x^2 + 1) = 1$ in $\mathbb{Z}_p[x]$, which is impossible since $\overline{f}(x)(x^2 + 1)$ in $\mathbb{Z}_p[x]$ is either 0 or has degree at least 2. This contradiction establishes that $\langle x^2 + 1, p \rangle$ is not equal to $\mathbb{Z}[x]$, which completes the proof that $\langle x^2 + 1 \rangle$ is not maximal in $\mathbb{Z}[x]$.