Homework \#6 Solutions

p 315, \#4 Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots a_{0} \in \mathbb{Z}[x]$ and suppose that $x-r$ divides $f(x)$ for some $r \in \mathbb{Q}$. Then we must have $f(r)=0$. We will use this fact to prove that in fact $r \in \mathbb{Z}$. If $r=0$ then there is nothing to prove. So assume $r \neq 0$ and write $r=a / b$ with $a, b \in \mathbb{Z}$, $b \neq 0$ and $(a, b)=1$. Then

$$
\begin{aligned}
0 & =f(r) \\
& =f(a / b) \\
& =\left(\frac{a}{b}\right)^{n}+a_{n-1}\left(\frac{a}{b}\right)^{n-1}+\cdots+a_{1}\left(\frac{a}{b}\right)+a_{0} .
\end{aligned}
$$

Multiplying both sides by b^{n} then yields

$$
0=a^{n}+a_{n-1} a^{n-1} b+a_{n-2} a^{n-2} b^{2}+\cdots+a_{1} a b^{n-1}+a_{0} b^{n}
$$

which is equivalent to

$$
\begin{aligned}
a^{n} & =-\left(a_{n-1} a^{n-1} b+a_{n-2} a^{n-2} b^{2}+\cdots+a_{1} a b^{n-1}+a_{0} b^{n}\right) \\
& =-b\left(a_{n-1} a^{n-1}+a_{n-2} a^{n-2} b+\cdots+a_{1} a b^{n-2}+a_{0} b^{n-1}\right)
\end{aligned}
$$

Since $a_{n-1} a^{n-1}+a_{n-2} a^{n-2} b+\cdots+a_{1} a b^{n-2}+a_{0} b^{n-1} \in \mathbb{Z}$, this implies that b divides a^{n}. Since $(a, b)=1$, this can only occur if $b= \pm 1$. But then $r=a / b= \pm a \in \mathbb{Z}$, as claimed.
p 315, $\# 6$ If p is prime and $f(x) \in \mathbb{Z}_{p}[x]$ is irreducible then $\mathbb{Z}_{p}[x] /\langle f(x)\rangle$ is a field by Corollary 1 to Theorem 17.5 , since \mathbb{Z}_{p} is a field. Moreover, we proved in class that since $\operatorname{deg} f(x)=n$ the each element of $\mathbb{Z}_{p}[x] /\langle f(x)\rangle$ can be expressed uniquely as $a_{n-1} x^{n-1}+$ $a_{n-2} x^{n-2}+\cdots+a_{0}+\langle f(x)\rangle$ for some $a_{i} \in F$. Since there are p choices for each coefficient a_{i} and n coefficients, there are exactly p^{n} such cosets. That is, $\mathbb{Z}_{p}[x] /\langle f(x)\rangle$ is a field with p^{n} elements.
p 316, \#8 Let $f(x)=x^{3}+2 x+1 \in \mathbb{Z}_{3}[x]$. It is easy to show that $f(x)$ has no roots in \mathbb{Z}_{3} and as $\operatorname{deg} f(x)=3$, this implies $f(x)$ is irreducible in $\mathbb{Z}_{3}[x]$. So according to Exercise $\# 6$, $\mathbb{Z}_{3}[x] /\left\langle x^{3}+2 x+1\right\rangle$ is a field with $3^{3}=27$ elements.
p 316, \#10
a. $x^{5}+9 x^{4}+12 x^{2}+6$ is irreducible according Eisenstein's criterion with $p=3$.
b. Consider $x^{4}+x+1 \bmod 2$. It is easy to see that this polynomial has no roots in \mathbb{Z}_{2}, and so to prove irreducibility in \mathbb{Z}_{2} it suffices to show it has no quadratic factors. The only quadratic polynomial in $\mathbb{Z}_{2}[x]$ that does not have a root in \mathbb{Z}_{2} is $x^{2}+x+1$ which does not divide $x^{4}+x+1$ in $\mathbb{Z}_{2}[x]$, as is also easily checked. It follows that $x^{4}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$ and so by the $\bmod p$ test with $p=2$ we conclude that $x^{4}+x+1$ is irreducible in $\mathbb{Q}[x]$.
c. $x^{4}+3 x^{2}+3$ is irreducible according to Eisenstein's criterion with $p=3$.
d. Consider $x^{5}+5 x^{2}+1 \bmod 2$, which is $x^{5}+x^{2}+1$. It is easy to see that this polynomial has no roots in \mathbb{Z}_{2}, and so to prove irreducibility in \mathbb{Z}_{2} it again suffices to show it has no quadratic factors. The only quadratic polynomial in $\mathbb{Z}_{2}[x]$ that does not have a root in \mathbb{Z}_{2} is $x^{2}+x+1$ which does not divide $x^{5}+x^{2}+1$ in $\mathbb{Z}_{2}[x]$, as is also easily checked. It follows that $x^{5}+x^{2}+1$ is irreducible in $\mathbb{Z}_{2}[x]$ and so by the $\bmod p$ test with $p=2$ we conclude that $x^{5}+5 x^{2}+1$ is irreducible in $\mathbb{Q}[x]$.
e. Let $f(x)=(5 / 2) x^{5}+(9 / 2) x^{4}+15 x^{3}+(3 / 7) x^{2}+6 x+3 / 14$ and $g(x)=35 x^{5}+63 x^{4}+$ $210 x^{3}+6 x^{2}+84 x+3=14 f(x)$. Since 14 is a unit in $\mathbb{Q}[x], f(x)$ is irreducible in $\mathbb{Q}[x]$ if and only if $g(x)$ is, and the latter statement is true by Eisenstein's criterion with $p=3$.
p 316, $\# 12$ Since it has degree 2 , to show that $x^{2}+x+4$ is irreducible in $\mathbb{Z}_{1} 1[x]$ it suffices to show it has no roots in \mathbb{Z}_{11}, as \mathbb{Z}_{11} is a field. This is straightforward and is left to the reader.

p 316, \#16

a. Since \mathbb{Z}_{p} is a field, a polynomial of the form $x^{2}+a x+b \in \mathbb{Z}_{p}[x]$ is reducible if and only if there exist $c, d \in \mathbb{Z}_{11}$ so that $x^{2}+a x+b=(x+c)(x+d)$. There are $\binom{p}{2}$ such polynomials for which $c \neq d$ and p for which $c=d$. Therefore, there are exactly

$$
\binom{p}{2}+p=\frac{p(p-1)}{2}+p=\frac{p(p+1)}{2}
$$

reducible monic quadratic polynomials in $\mathbb{Z}_{p}[x]$. Since there are p^{2} polynomials of the form $x^{2}+a x+b$ and each one is either reducible or irreducible, we conclude there are

$$
p^{2}-\frac{p(p+1)}{2}=\frac{p(p-1)}{2}
$$

irreducible monic degree 2 polynomials in $\mathbb{Z}_{p}[x]$.
b. If $f(x) \in \mathbb{Z}_{p}[x]$ is irreducible of degree 2, then $f(x)=a g(x)$ for some $a \in F, a \neq 0$ and $g(x) \in F[x]$ irreducible, monic and of degree 2. There are $p-1$ choices for a and, by part (a), $p(p-1) / 2$ choices for $g(x)$. Therefore there are $p(p-1)^{2} / 2$ irreducible quadratic polynomials in $\mathbb{Z}_{p}[x]$.
p 316, \#24 Substituting all of the elements of \mathbb{Z}_{7} into $3 x^{2}+x+4$ we find that it has two roots: 4 and 5 . The quadratic formula "predicts" the roots

$$
\frac{-1 \pm \sqrt{-47}}{6}=6(-1 \pm \sqrt{2})=1 \pm 6 \sqrt{2}
$$

since $6^{-1}=6$ in \mathbb{Z}_{7} and $-47=2$ in \mathbb{Z}_{7}. Since $3^{2}=9=2$ in \mathbb{Z}_{7}, we can take $\sqrt{2}=3$ and so the two predicted roots are

$$
1 \pm 6 \cdot 3=4,5
$$

which agree with those found by substitution.
If we substitute all of the elements of \mathbb{Z}_{5} into $2 x^{2}+x+3$ we find no roots. The quadratic formula predicts the roots are

$$
\frac{-1 \pm \sqrt{-23}}{4}=4(4+\sqrt{2})=1+4 \sqrt{2}
$$

since $4^{-1}=4$ and $-23=2$ in \mathbb{Z}_{5}. However, there is no element in \mathbb{Z}_{5} whose square is 2 , so $\sqrt{2}$ is not an element of \mathbb{Z}_{5}. Consequently the roots predicted by the quadratic formula do not belong to \mathbb{Z}_{5}, which is in agreement with the fact that there are no roots in \mathbb{Z}_{5}.

It turns out that the quadratic formula alwaysgives the roots of $a x^{2}+b x+c \in F[x]$ for any field F, as long as we agree that if $b^{2}-4 a c$ is not a square in F then we interpret the formula as yielding no roots. This is easily proven using the usual proof of the quadratic formula (i.e. completing the square).
p 317, \#28 Let $f(x) \in \mathbb{Q}[x]$ be nonzero. Choose an $n \in \mathbb{Z}^{+}$so that $g(x)=n f(x) \in \mathbb{Z}[x]$. Since $n \neq 0$ it is a unit in $\mathbb{Q}[x]$. So $f(x)$ is irreducible in $\mathbb{Q}[x]$ if and only if $g(x)$ is, and the latter's irreducibility can be tested using the mod p test.
p 317, $\# \mathbf{3 0}$ Let $f(x)=x^{p-1}-x^{p-2}+x^{p-3}-\cdots-x+1$. If $p=2$ then the polynomial in question is $x-1$ which is obviously irreducible in $\mathbb{Q}[x]$. If $p>2$ then it is odd and so

$$
g(x)=f(-x)=x^{p-1}+x^{p-2}+x^{p-3}+\cdots+x+1
$$

is the p th cyclotomic polynomial, which is irreducible according to the Corollary of Theorem 17.4. It follows that $f(x)$ is irreducible, for if $f(x)$ factored so too would $g(x)$.
p 317, $\# 32$ Let $f(x), g(x) \in \mathbb{Z}[x]$ and suppose that $f(x) g(x) \in\left\langle x^{2}+1\right\rangle$. Then there is an $h(x) \in \mathbb{Z}[x]$ so that $f(x) g(x)=\left(x^{2}+1\right) h(x)$. Since $x^{2}+1$ is primitive and irreducible in $\mathbb{Q}[x]$, it is also irreducible in $\mathbb{Z}[x]$. We apply Theorem 17.6 to write

$$
\begin{aligned}
f(x) & =a_{1} \cdots a_{k} p_{1}(x) \cdots p_{l}(x) \\
g(x) & =b_{1} \cdots b_{m} q_{1}(x) \cdots q_{n}(x) \\
h(x) & =c_{1} \cdots c_{s} r_{1}(x) \cdots r_{t}(x)
\end{aligned}
$$

where the a_{i}, b_{i} and c_{i} are primes in \mathbb{Z} and the $p_{i}(x), q_{i}(x)$ and $r_{i}(x)$ are irreducible polynomials of positive degree in $\mathbb{Z}[x]$. Substituting these expressions into $f(x) g(x)=\left(x^{2}+1\right) h(x)$ and rearranging we obtain

$$
a_{1} \cdots a_{k} b_{1} \cdots b_{m} p_{1}(x) \cdots p_{l}(x) q_{1}(x) \cdots q_{n}(x)=c_{1} \cdots c_{s} r_{1}(x) \cdots r_{t}(x)\left(x^{2}+1\right) .
$$

Theorem 17.6 and the irreducibility of $x^{2}+1$ now imply that $x^{2}+1= \pm p_{i}(x)$ for some i or $x^{2}+1= \pm q_{i}(x)$ for some i. In the first case $x^{2}+1$ divides $f(x)$ and in the second $x^{2}+1$ divides $g(x)$. That is, either $f(x) \in\left\langle x^{2}+1\right\rangle$ or $g(x) \in\left\langle x^{2}+1\right\rangle$. Therefore $\left\langle x^{2}+1\right\rangle$ is prime in $\mathbb{Z}[x] .{ }^{1}$

[^0]Let $p \in \mathbb{Z}^{+}$be any prime. We will show that $\left\langle x^{2}+1\right\rangle$ is properly contained in $\left\langle x^{2}+1, p\right\rangle$ which is not equal to $\mathbb{Z}[x]$. This will prove that $\left\langle x^{2}+1\right\rangle$ is not maximal. Since every nonzero element of $\left\langle x^{2}+1\right\rangle$ has degree at least $2, p \notin\left\langle x^{2}+1\right\rangle$. This proves that $\left\langle x^{2}+1\right\rangle$ is properly contained in $\left\langle x^{2}+1, p\right\rangle$. Now suppose, for the sake of contradiction, that $\left\langle x^{2}+1, p\right\rangle=\mathbb{Z}[x]$. Then there exist $f(x), g(x) \in \mathbb{Z}[x]$ so that $f(x)\left(x^{2}+1\right)+g(x) p=1$. If we consider this equation mod p we obtain $\bar{f}(x)\left(x^{2}+1\right)=1$ in $\mathbb{Z}_{p}[x]$, which is impossible since $\bar{f}(x)\left(x^{2}+1\right)$ in $\mathbb{Z}_{p}[x]$ is either 0 or has degree at least 2 . This contradiction establishes that $\left\langle x^{2}+1, p\right\rangle$ is not equal to $\mathbb{Z}[x]$, which completes the proof that $\left\langle x^{2}+1\right\rangle$ is not maximal in $\mathbb{Z}[x]$.

[^0]: ${ }^{1}$ Now that we know about UFD's we can actually dramatically simplify this proof: as above, $x^{2}+1$ is irreducible in $\mathbb{Z}[x]$; since $\mathbb{Z}[x]$ is a UFD, every irreducible element is also prime, so $\left\langle x^{2}+1\right\rangle$ is a prime ideal.

