Homework \#7 Solutions

\#1 Let $I=\langle f(x), g(x)\rangle$. Since $F[x]$ is a PID there is an $h(x) \in F[x]$ so that $I=\langle h(x)\rangle$. But this implies that $h(x)$ divides both $f(x)$ and $g(x)$. As $f(x)$ and $g(x)$ are relatively prime this can only happen if $h(x)$ is a unit in $F[x]$. Hence $\langle f(x), g(x)\rangle=I=\langle h(x)\rangle=F[x]$. Since $1 \in F[x]$ we conclude that there exist $r(x), s(x) \in F[x]$ so that $r(x) f(x)+s(x) g(x)=1$.
\#2 According to Exercise 1, there are polynomials $r_{1}(x), s_{1}(x) \in F[x]$ so that $r(x) f(x)+$ $s(x) g(x)=1$. Multiplying both sides of this equation by $c(x)$ we obtain $r_{2}(x) f(x)+$ $s_{2}(x) g(x)=c(x)$, where $r_{2}(x)=c(x) r_{1}(x)$ and $s_{2}(x)=c(x) s_{1}(x)$. Now apply the division algorithm to obtain

$$
\begin{aligned}
& r_{2}(x)=a(x) g(x)+r(x) \\
& s_{2}(x)=b(x) f(x)+s(x)
\end{aligned}
$$

where $a(x), b(x), r(x), s(x) \in F[x], r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$, and $s(x)=0$ or $\operatorname{deg} s(x)<\operatorname{deg} f(x)$. Now substitute these expressions into $r_{2}(x) f(x)+s_{2}(x) g(x)=c(x)$ and rearrange:

$$
c(x)=f(x) g(x)(a(x)+b(x))+r(x) f(x)+s(x) g(x)
$$

If $f(x) g(x)(a(x)+b(x)) \neq 0$ then it has degree greater than or equal to $\operatorname{deg} f(x) g(x)$. But then $c(x)-r(x) f(x)-s(x) g(x)$ is nonzero as well and has degree strictly less that $\operatorname{deg} f(x) g(x)$ because of the degree restrictions on $c(x), r(x), s(x)$. But then we have
$\operatorname{deg}(f(x) g(x)) \leq \operatorname{deg}(f(x) g(x)(a(x)+b(x)))=\operatorname{deg}(c(x)-r(x) f(x)-s(x) g(x))<\operatorname{deg}(f(x) g(x))$
which is impossible. We conclude, therefore, that $f(x) g(x)(a(x)+b(x))=0$ and that $c(x)=r(x) f(x)+s(x) g(x)$. Dividing by $f(x) g(x)$ we obtain

$$
\frac{c(x)}{f(x) g(x)}=\frac{r(x)}{g(x)}+\frac{s(x)}{f(x)}
$$

with the required degree restrictions on $r(x)$ and $s(x)$.
\#3 This is substantially easier than Exercise 2. Use the division algorithm to write $c(x)=$ $q(x) f(x)+r(x)$ with $q(x), r(x) \in F[x]$ where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} f(x)$. Since $\operatorname{deg} c(x)<\operatorname{deg} f(x)^{2}$, it follows that $\operatorname{deg}(q(x) f(x))=\operatorname{deg}(c(x)-r(x))<\operatorname{deg} f(x)^{2}$. That is, $\operatorname{deg} q(x)+\operatorname{deg} f(x)<2 \operatorname{deg} f(x)$, which implies that $\operatorname{deg} q(x)<\operatorname{deg} f(x)$. So, dividing both sides of $c(x)=q(x) f(x)+r(x)$ by $f(x)$ we obtain

$$
\frac{c(x)}{f(x)^{2}}=\frac{q(x)}{f(x)^{2}}+\frac{r(x)}{f(x)}
$$

with the desired degree restrictions on $q(x)$ and $r(x)$.

