p 333, #6 Let D be an integral domain and $a, b, c \in D$

- (i) Reflexivity. Since a = 1a and 1 is a unit, $a \sim a$.
- (ii) Symmetry. If $a \equiv b$ then a = ub for some unit $u \in D$. But then $b = u^{-1}a$ so that $b \sim a$, since u^{-1} is also a unit in D.
- (iii) Transitivity. If $a \equiv b$ and $b \equiv c$ then there exist units $u, v \in D$ so that a = ub and b = vc. But then a = ub = u(vc) = (uv)c. Since the set of units in D is closed under multiplication, uv is also a unit and hence $a \sim c$.

p 333, #8 Let u be a unit in D. Then $d(1) \leq d(1u) = d(u)$ and $d(1) = d(uu^{-1}) \geq d(u)$ so that d(u) = d(1). Now suppose that d(u) = d(1). Use the division algorithm to write 1 = qu + r for some $q, r \in D$ with r = 0 or d(r) < d(u) = d(1). Since $d(1) \leq d(1r) = d(r)$, the latter case cannot occur so we conclude that r = 0, i.e. 1 = qu for some $q \in D$. That is, u is a unit in D.

p 333, #10 It should be pointed out that the problem is incorrectly stated in the text. One must assume at the beginning that p is nonzero. We do so below.

Let $p \in D$ be irreducible and let $I \subset D$ be an ideal with $\langle p \rangle I$. Since D is a PID, $I = \langle a \rangle$ for some $a \in D$. Then $\langle p \rangle \subset \langle a \rangle$ implies that p = ab for some $b \in R$. As p is irreducible, either a is a unit, in which case $I = \langle a \rangle = D$, or b is a unit, in which case $I = \langle a \rangle = \langle p \rangle$. This proves that $\langle p \rangle$ is maximal.

Now suppose that $\langle p \rangle$ is maximal. Since a maximal ideals are always proper, p is not a unit in D. Suppose that p = ab for some $a, b \in D$. Then $p \in \langle a \rangle$ so that $\langle p \rangle \subset \langle a \rangle$. The maximality of $\langle p \rangle$ implies that $\langle p \rangle = \langle a \rangle$ or that $\langle a \rangle = D$. In the first case it follows that $a \in \langle p \rangle$ so that a = kp for some $k \in D$. But then p = ab = (kp)b = p(kb) and cancelation in D implies that kb = 1, i.e. b is a unit. In the second case, a is a unit since $1 \in \langle a \rangle$ implies that 1 = ka for some $k \in D$. So, we have shown that if p = ab in D then either a or b is a unit, and hence p is irreducible.

p 333, #12 Let $I \subset D$ be a proper ideal. If I is maximal, there is nothing to show. So suppose that I is not maximal. Then there is a proper ideal $I_2 \neq I$ so that $I \subset I_2$. If I_2 is maximal we are finished. If not, then we may find a proper ideal $I_3 \neq I_2$ so that $I_2 \subset I_3$. Continue to construct ideals in this way: if I_n is not maximal then choose a proper ideal $I_{n+1} \neq I_n$ so that $I_n \subset I_{n+1}$. If none of the ideals I_n is ever maximal then we obtain an infinite ascending chain of ideals $I \subset I_1 \subset I_2 \subset I_3 \subset$ in which every containment is proper. However, we know that no such a chain can exist in a PID. It follows that at some point one of the I_n will be maximal and since $I \subset I_1 \subset I_2 \subset \cdots \subset I_n$, this finishes the proof.

p 334, #14 In $\mathbb{Z}[i]$ we have N(1-i) = 1 + 1 = 2, which is prime. Therefore 1 - i is irreducible.

p 334, #18 In $\mathbb{Z}[\sqrt{6}]$, N(7) = 49. So 7 is not a unit and if 7 = xy in $\mathbb{Z}[\sqrt{6}]$ for some nonunits x and y, then $N(x) = \pm 7$. Writing $x = a + b\sqrt{6}$ for some $a, b \in \mathbb{Z}$ this would mean that $a^2 - 6b^2 = \pm 7$. Going mod 7 we obtain $a^2 - 6b^2 = 0$ in \mathbb{Z}_7 or $a^2 = 6b^2$. If $b \neq 0$ in \mathbb{Z}_7 then this yields $(a/b)^2 = 6$, which is impossible since 6 is not a square in \mathbb{Z}_7 . Therefore a = b = 0 in \mathbb{Z}_7 , i.e. both a and b are divisible by 7. But then both a^2 and b^2 are divisible by 7^2 , which implies that 49 divides $a^2 - 6b^2 = \pm 7$, an impossibility. This contradiction means that if 7 = xy in $\mathbb{Z}[\sqrt{6}]$ then x or y is a unit, i.e. 7 is irreducible.

p 334, #20 According to Example 1, $\mathbb{Z}[\sqrt{-3}]$ has irreducible elements that are not prime. Since every irreducible in a UFD is also prime, $\mathbb{Z}[\sqrt{-3}]$ is not a UFD. Since every PID is also a UFD, $\mathbb{Z}[\sqrt{-3}]$ is not a PID, either.

p 334, #22 In $\mathbb{Z}[\sqrt{5}]$ we have N(2) = 4, so 2 is not a unit. If 2 = xy with neither x nor y a unit in $\mathbb{Z}[\sqrt{5}]$ then it must be the case that $N(x) = \pm 2$. Then we would have integers a, b so that $\pm 2 = N(a + b\sqrt{5}) = a^2 - 5b^2$, which implies that $a^2 \pmod{5} = 2$ or 3, neither of which is possible. Hence, if 2 = xy in $\mathbb{Z}[\sqrt{5}]$ then x or y is a unit, which means that 2 is irreducible in $\mathbb{Z}[\sqrt{5}]$. Notice that $2 \cdot 2 = 4 = (1 + \sqrt{5})(-1 + \sqrt{5})$, so that 2 divides $(1 + \sqrt{5})(-1 + \sqrt{5})$, but 2 divides neither $1 + \sqrt{5}$ nor $-1 + \sqrt{5}$, proving that 2 is not prime in $\mathbb{Z}[\sqrt{5}]$.

Similarly, in $\mathbb{Z}[\sqrt{5}]$ we have $N(1+\sqrt{5}) = -4$, which proves that -4 is not a unit. Moreover, if $1 + \sqrt{5} = xy$ in $\mathbb{Z}[\sqrt{5}]$ with neither x nor y a unit then, as above, $N(x) = \pm 2$, which we have already argued is impossible. It follows that $1 + \sqrt{5}$ is irreducible. Again noting that $2 \cdot 2 = 4 = (1 + \sqrt{5})(-1 + \sqrt{5})$, we see that $1 + \sqrt{5}$ divides $2 \cdot 2$. But for any $a + b\sqrt{5} \in \mathbb{Z}[\sqrt{5}]$ we have $(a + b\sqrt{5})(1 + \sqrt{5}) = (a + 5b) + (a + b)\sqrt{5}$, which can never equal two since the system a + 5b = 2, a + b = 0 has no solution in integers. Therefore, $1 + \sqrt{5}$ does not divide 2, showing that the former is not prime in $\mathbb{Z}[\sqrt{5}]$.

p 334, #28 We know that $x + iy \in \mathbb{Z}[i]$ is a unit if and only if $1 = N(x + iy) = x^2 + y^2$. Since x and y are both integers this can only occur if $(x^2, y^2) = (1, 0)$ or $(x^2, y^2) = (0, 1)$, which means that x + iy is one of the four elements $\pm 1, \pm i$.

p 334, #30 This is not a contradiction because the irreducible factors in question are associates, which is all we are guaranteed in a UFD. In particular we have 3(3x + 2) = 9x + 6 = 4x + 1 and 2(x + 4) = 2x + 8 = 2x + 3 over \mathbb{Z}_5 , and both 3 and 2 are units in \mathbb{Z}_5 .

p 335, #34 A subdomain of a Euclidean domain need not be Euclidean. For example, the ring $\mathbb{Z}[x]$ is not a PID and therefore is not Euclidean, however it is a subdomain of $\mathbb{Q}[x]$ which we know to be a Euclidean domain.