
Homework #8 Solutions

p 333, #6 Let D be an integral domain and a, b, c ∈ D

(i) Reflexivity. Since a = 1a and 1 is a unit, a ∼ a.

(ii) Symmetry. If a ≡ b then a = ub for some unit u ∈ D. But then b = u−1a so that b ∼ a,
since u−1 is also a unit in D.

(iii) Transitivity. If a ≡ b and b ≡ c then there exist units u, v ∈ D so that a = ub and
b = vc. But then a = ub = u(vc) = (uv)c. Since the set of units in D is closed under
multiplication, uv is also a unit and hence a ∼ c.

p 333, #8 Let u be a unit in D. Then d(1) ≤ d(1u) = d(u) and d(1) = d(uu−1) ≥ d(u)
so that d(u) = d(1). Now suppose that d(u) = d(1). Use the division algorithm to write
1 = qu + r for some q, r ∈ D with r = 0 or d(r) < d(u) = d(1). Since d(1) ≤ d(1r) = d(r),
the latter case cannot occur so we conclude that r = 0, i.e. 1 = qu for some q ∈ D. That is,
u is a unit in D.

p 333, #10 It should be pointed out that the problem is incorrectly stated in the text. One
must assume at the beginning that p is nonzero. We do so below.

Let p ∈ D be irreducible and let I ⊂ D be an ideal with 〈p〉I. Since D is a PID, I = 〈a〉
for some a ∈ D. Then 〈p〉 ⊂ 〈a〉 implies that p = ab for some b ∈ R. As p is irreducible,
either a is a unit, in which case I = 〈a〉 = D, or b is a unit, in which case I = 〈a〉 = 〈p〉.
This proves that 〈p〉 is maximal.

Now suppose that 〈p〉 is maximal. Since a maximal ideals are always proper, p is not a
unit in D. Suppose that p = ab for some a, b ∈ D. Then p ∈ 〈a〉 so that 〈p〉 ⊂ 〈a〉. The
maximality of 〈p〉 implies that 〈p〉 = 〈a〉 or that 〈a〉 = D. In the first case it follows that
a ∈ 〈p〉 so that a = kp for some k ∈ D. But then p = ab = (kp)b = p(kb) and cancelation in
D implies that kb = 1, i.e. b is a unit. In the second case, a is a unit since 1 ∈ 〈a〉 implies
that 1 = ka for some k ∈ D. So, we have shown that if p = ab in D then either a or b is a
unit, and hence p is irreducible.

p 333, #12 Let I ⊂ D be a proper ideal. If I is maximal, there is nothing to show. So
suppose that I is not maximal. Then there is a proper ideal I2 6= I so that I ⊂ I2. If I2 is
maximal we are finished. If not, then we may find a proper ideal I3 6= I2 so that I2 ⊂ I3.
Continue to construct ideals in this way: if In is not maximal then choose a proper ideal
In+1 6= In so that In ⊂ In+1. If none of the ideals In is ever maximal then we obtain an
infinite ascending chain of ideals I ⊂ I1 ⊂ I2 ⊂ I3 ⊂ in which every containment is proper.
However, we know that no such a chain can exist in a PID. It follows that at some point one
of the In will be maximal and since I ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In, this finishes the proof.



p 334, #14 In Z[i] we have N(1 − i) = 1 + 1 = 2, which is prime. Therefore 1 − i is
irreducible.

p 334, #18 In Z[
√

6], N(7) = 49. So 7 is not a unit and if 7 = xy in Z[
√

6] for some
nonunits x and y, then N(x) = ±7. Writing x = a + b

√
6 for some a, b ∈ Z this would mean

that a2 − 6b2 = ±7. Going mod 7 we obtain a2 − 6b2 = 0 in Z7 or a2 = 6b2. If b 6= 0 in
Z7 then this yields (a/b)2 = 6, which is impossible since 6 is not a square in Z7. Therefore
a = b = 0 in Z7, i.e. both a and b are divisible by 7. But then both a2 and b2 are divisible by
72, which implies that 49 divides a2 − 6b2 = ±7, an impossibility. This contradiction means
that if 7 = xy in Z[

√
6] then x or y is a unit, i.e. 7 is irreducible.

p 334, #20 According to Example 1, Z[
√
−3] has irreducible elements that are not prime.

Since every irreducible in a UFD is also prime, Z[
√
−3] is not a UFD. Since every PID is

also a UFD, Z[
√
−3] is not a PID, either.

p 334, #22 In Z[
√

5] we have N(2) = 4, so 2 is not a unit. If 2 = xy with neither x nor y a
unit in Z[

√
5] then it must be the case that N(x) = ±2. Then we would have integers a, b so

that ±2 = N(a + b
√

5) = a2− 5b2, which implies that a2 (mod 5) = 2 or 3, neither of which
is possible. Hence, if 2 = xy in Z[

√
5] then x or y is a unit, which means that 2 is irreducible

in Z[
√

5]. Notice that 2 · 2 = 4 = (1 +
√

5)(−1 +
√

5), so that 2 divides (1 +
√

5)(−1 +
√

5),
but 2 divides neither 1 +

√
5 nor −1 +

√
5, proving that 2 is not prime in Z[

√
5].

Similarly, in Z[
√

5] we have N(1+
√

5) = −4, which proves that−4 is not a unit. Moreover,
if 1 +

√
5 = xy in Z[

√
5] with neither x nor y a unit then, as above, N(x) = ±2, which we

have already argued is impossible. It follows that 1 +
√

5 is irreducible. Again noting that
2 ·2 = 4 = (1+

√
5)(−1+

√
5), we see that 1+

√
5 divides 2 ·2. But for any a+ b

√
5 ∈ Z[

√
5]

we have (a + b
√

5)(1 +
√

5) = (a + 5b) + (a + b)
√

5, which can never equal two since the
system a + 5b = 2, a + b = 0 has no solution in integers. Therefore, 1 +

√
5 does not divide

2, showing that the former is not prime in Z[
√

5].

p 334, #28 We know that x + iy ∈ Z[i] is a unit if and only if 1 = N(x + iy) = x2 + y2.
Since x and y are both integers this can only occur if (x2, y2) = (1, 0) or (x2, y2) = (0, 1),
which means that x + iy is one of the four elements ±1,±i.

p 334, #30 This is not a contradiction because the irreducible factors in question are
associates, which is all we are guaranteed in a UFD. In particular we have 3(3x + 2) =
9x + 6 = 4x + 1 and 2(x + 4) = 2x + 8 = 2x + 3 over Z5, and both 3 and 2 are units in Z5.

p 335, #34 A subdomain of a Euclidean domain need not be Euclidean. For example, the
ring Z[x] is not a PID and therefore is not Euclidean, however it is a subdomain of Q[x]
which we know to be a Euclidean domain.


