Homework \#8 Solutions

p 333, $\# \mathbf{6}$ Let D be an integral domain and $a, b, c \in D$
(i) Reflexivity. Since $a=1 a$ and 1 is a unit, $a \sim a$.
(ii) Symmetry. If $a \equiv b$ then $a=u b$ for some unit $u \in D$. But then $b=u^{-1} a$ so that $b \sim a$, since u^{-1} is also a unit in D.
(iii) Transitivity. If $a \equiv b$ and $b \equiv c$ then there exist units $u, v \in D$ so that $a=u b$ and $b=v c$. But then $a=u b=u(v c)=(u v) c$. Since the set of units in D is closed under multiplication, $u v$ is also a unit and hence $a \sim c$.
p 333, \#8 Let u be a unit in D. Then $d(1) \leq d(1 u)=d(u)$ and $d(1)=d\left(u u^{-1}\right) \geq d(u)$ so that $d(u)=d(1)$. Now suppose that $d(u)=d(1)$. Use the division algorithm to write $1=q u+r$ for some $q, r \in D$ with $r=0$ or $d(r)<d(u)=d(1)$. Since $d(1) \leq d(1 r)=d(r)$, the latter case cannot occur so we conclude that $r=0$, i.e. $1=q u$ for some $q \in D$. That is, u is a unit in D.
p 333, \#10 It should be pointed out that the problem is incorrectly stated in the text. One must assume at the beginning that p is nonzero. We do so below.

Let $p \in D$ be irreducible and let $I \subset D$ be an ideal with $\langle p\rangle I$. Since D is a PID, $I=\langle a\rangle$ for some $a \in D$. Then $\langle p\rangle \subset\langle a\rangle$ implies that $p=a b$ for some $b \in R$. As p is irreducible, either a is a unit, in which case $I=\langle a\rangle=D$, or b is a unit, in which case $I=\langle a\rangle=\langle p\rangle$. This proves that $\langle p\rangle$ is maximal.

Now suppose that $\langle p\rangle$ is maximal. Since a maximal ideals are always proper, p is not a unit in D. Suppose that $p=a b$ for some $a, b \in D$. Then $p \in\langle a\rangle$ so that $\langle p\rangle \subset\langle a\rangle$. The maximality of $\langle p\rangle$ implies that $\langle p\rangle=\langle a\rangle$ or that $\langle a\rangle=D$. In the first case it follows that $a \in\langle p\rangle$ so that $a=k p$ for some $k \in D$. But then $p=a b=(k p) b=p(k b)$ and cancelation in D implies that $k b=1$, i.e. b is a unit. In the second case, a is a unit since $1 \in\langle a\rangle$ implies that $1=k a$ for some $k \in D$. So, we have shown that if $p=a b$ in D then either a or b is a unit, and hence p is irreducible.
p 333, $\# 12$ Let $I \subset D$ be a proper ideal. If I is maximal, there is nothing to show. So suppose that I is not maximal. Then there is a proper ideal $I_{2} \neq I$ so that $I \subset I_{2}$. If I_{2} is maximal we are finished. If not, then we may find a proper ideal $I_{3} \neq I_{2}$ so that $I_{2} \subset I_{3}$. Continue to construct ideals in this way: if I_{n} is not maximal then choose a proper ideal $I_{n+1} \neq I_{n}$ so that $I_{n} \subset I_{n+1}$. If none of the ideals I_{n} is ever maximal then we obtain an infinite ascending chain of ideals $I \subset I_{1} \subset I_{2} \subset I_{3} \subset$ in which every containment is proper. However, we know that no such a chain can exist in a PID. It follows that at some point one of the I_{n} will be maximal and since $I \subset I_{1} \subset I_{2} \subset \cdots \subset I_{n}$, this finishes the proof.
p 334, $\# \mathbf{1 4}$ In $\mathbb{Z}[i]$ we have $N(1-i)=1+1=2$, which is prime. Therefore $1-i$ is irreducible.
p 334, $\# \mathbf{1 8}$ In $\mathbb{Z}[\sqrt{6}], N(7)=49$. So 7 is not a unit and if $7=x y$ in $\mathbb{Z}[\sqrt{6}]$ for some nonunits x and y, then $N(x)= \pm 7$. Writing $x=a+b \sqrt{6}$ for some $a, b \in \mathbb{Z}$ this would mean that $a^{2}-6 b^{2}= \pm 7$. Going mod 7 we obtain $a^{2}-6 b^{2}=0$ in \mathbb{Z}_{7} or $a^{2}=6 b^{2}$. If $b \neq 0$ in \mathbb{Z}_{7} then this yields $(a / b)^{2}=6$, which is impossible since 6 is not a square in \mathbb{Z}_{7}. Therefore $a=b=0$ in \mathbb{Z}_{7}, i.e. both a and b are divisible by 7 . But then both a^{2} and b^{2} are divisible by 7^{2}, which implies that 49 divides $a^{2}-6 b^{2}= \pm 7$, an impossibility. This contradiction means that if $7=x y$ in $\mathbb{Z}[\sqrt{6}]$ then x or y is a unit, i.e. 7 is irreducible.
p 334, $\# \mathbf{2 0}$ According to Example $1, \mathbb{Z}[\sqrt{-3}]$ has irreducible elements that are not prime. Since every irreducible in a UFD is also prime, $\mathbb{Z}[\sqrt{-3}]$ is not a UFD. Since every PID is also a UFD, $\mathbb{Z}[\sqrt{-3}]$ is not a PID, either.
p 334, $\# \mathbf{2 2}$ In $\mathbb{Z}[\sqrt{5}]$ we have $N(2)=4$, so 2 is not a unit. If $2=x y$ with neither x nor y a unit in $\mathbb{Z}[\sqrt{5}]$ then it must be the case that $N(x)= \pm 2$. Then we would have integers a, b so that $\pm 2=N(a+b \sqrt{5})=a^{2}-5 b^{2}$, which implies that $a^{2}(\bmod 5)=2$ or 3 , neither of which is possible. Hence, if $2=x y$ in $\mathbb{Z}[\sqrt{5}]$ then x or y is a unit, which means that 2 is irreducible in $\mathbb{Z}[\sqrt{5}]$. Notice that $2 \cdot 2=4=(1+\sqrt{5})(-1+\sqrt{5})$, so that 2 divides $(1+\sqrt{5})(-1+\sqrt{5})$, but 2 divides neither $1+\sqrt{5}$ nor $-1+\sqrt{5}$, proving that 2 is not prime in $\mathbb{Z}[\sqrt{5}]$.

Similarly, in $\mathbb{Z}[\sqrt{5}]$ we have $N(1+\sqrt{5})=-4$, which proves that -4 is not a unit. Moreover, if $1+\sqrt{5}=x y$ in $\mathbb{Z}[\sqrt{5}]$ with neither x nor y a unit then, as above, $N(x)= \pm 2$, which we have already argued is impossible. It follows that $1+\sqrt{5}$ is irreducible. Again noting that $2 \cdot 2=4=(1+\sqrt{5})(-1+\sqrt{5})$, we see that $1+\sqrt{5}$ divides $2 \cdot 2$. But for any $a+b \sqrt{5} \in \mathbb{Z}[\sqrt{5}]$ we have $(a+b \sqrt{5})(1+\sqrt{5})=(a+5 b)+(a+b) \sqrt{5}$, which can never equal two since the system $a+5 b=2, a+b=0$ has no solution in integers. Therefore, $1+\sqrt{5}$ does not divide 2 , showing that the former is not prime in $\mathbb{Z}[\sqrt{5}]$.
p 334, $\# \mathbf{2 8}$ We know that $x+i y \in \mathbb{Z}[i]$ is a unit if and only if $1=N(x+i y)=x^{2}+y^{2}$. Since x and y are both integers this can only occur if $\left(x^{2}, y^{2}\right)=(1,0)$ or $\left(x^{2}, y^{2}\right)=(0,1)$, which means that $x+i y$ is one of the four elements $\pm 1, \pm i$.
p 334, $\# 30$ This is not a contradiction because the irreducible factors in question are associates, which is all we are guaranteed in a UFD. In particular we have $3(3 x+2)=$ $9 x+6=4 x+1$ and $2(x+4)=2 x+8=2 x+3$ over \mathbb{Z}_{5}, and both 3 and 2 are units in \mathbb{Z}_{5}.
p 335, \#34 A subdomain of a Euclidean domain need not be Euclidean. For example, the ring $\mathbb{Z}[x]$ is not a PID and therefore is not Euclidean, however it is a subdomain of $\mathbb{Q}[x]$ which we know to be a Euclidean domain.

