Homework #9 Solutions

Handout, #1 As suggested, we induct on m. When m = 1 we must prove the following statement: if $p_1, q_1, \ldots, q_n \in D$ $(n \in \mathbb{Z}^+)$ are primes and $p_1 = q_1q_2 \cdots q_n$ then n = 1. So, suppose we have the stated hypotheses and assume that $n \ge 2$. Since p_1 is prime and divides $q_1 \cdots q_n$ it divides q_1 (without loss of generality). So $q_1 = ap_1$ for some $a \in D$. But then the irreducibility of q_1 implies that a is a unit (since p_1 is not). Therefore we have

$$p_1 = (ap_1)q_2\cdots q_n$$
$$= p_1aq_2\cdots q_n.$$

As we are working in a domain we can cancel p_1 from both sides to obtain $1 = aq_2 \cdots q_n$, implying that q_2 is a unit. As q_2 is prime this is a contradiction and we conclude therefore that our assumption that $n \ge 2$ is false. Thus, n = 1 and $p_1 = q_1$.

We now prove the induction step. Let $m \in \mathbb{Z}^+$ be at least 2 and assume that the statement of the problem is true for m-1 and any $n \in \mathbb{Z}^+$. Let $p_1, \ldots, p_m, q_1, \ldots, q_n \in D$ $(n \in \mathbb{Z}^+)$ be primes with $p_1 p_2 \cdots p_m = q_1 q_2 \cdots q_n$. Since p_m is prime and divides $q_1 \cdots q_n$ it divides q_n (without loss of generality). Since p_m and q_n are both primes (and hence irreducible) we may argue as above and conclude that p_m and q_n are associate. Writing $q_n = ap_m$ for some unit $a \in D$ we have

$$p_1 \cdots p_m = q_1 q_2 \cdots q_{n-1} (ap_m)$$
$$= (aq_1)q_2 \cdots q_{n-1}p_m.$$

Since D is a domain we can cancel p_m to obtain $p_1 \cdots p_{m-1} = (aq_1)q_2 \cdots q_{n-1}$. Since aq_1 is also prime, the induction hypothesis implies that m-1=n-1 and (after reordering) p_1 is associate to aq_1 and p_i is associate to q_i for $i=2,\ldots,m-1$. But this means that m=n and p_i is associate to q_i for every *i*. That is, the statement of the exercise is true for $m \ge 2$ if it is true for m-1.

Finally, mathematical induction allows us to conclude that the statement of the exercise holds for all $min\mathbb{Z}^+$.

Handout, #2 a. We use the ideal test. First, $I \neq \emptyset$ since $0 \in I_1 \subset I$. Let $a, b \in I$ and $r \in R$. Then there are $i, j \in \mathbb{Z}^+$ so that $a \in I_i$ and $b \in I_j$. Without loss of generality we can assume that $i \leq j$. Then $I_i \subset I_j$ so that $a \in I_j$. Since I_j is an ideal, $a - b \in I_j \subset I$ and $ra \in I_j \subset I$. Since $a, b \in I$ and $r \in R$ were arbitrary, this proves that I is an ideal.

b. If R has an identity and each I_j is proper then $1 \notin I_j$ for every $j \in \mathbb{Z}^+$. It follows that $1 \not tI$ and therefore that $I \neq R$, i.e. I is a proper ideal.

p 335, #38 The ideals

$$I_n = \underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{n \text{ times}} \oplus 0 \oplus 0 \oplus \cdots$$

work.

p 340, #24 We start by noticing $13 = 3^2 + 2^2 = (3 + 2i)(3 - 2i)$. Since N(3 + 2i) = N(3 - 2i) = 13 is prime, both 3 + 2i and 3 - 2i are irreducible in $\mathbb{Z}[i]$, and so we have found the desired factorization.

Now we note that

$$\frac{5+i}{1+i} = \frac{(5+i)(1-i)}{(1+i)(1-i)} = \frac{6-4i}{2} = 3-2i$$

so that 5 + i = (1 + i)(3 - 2i). We have already seen that 3 - 2i is irreducible and 1 + i is, too, since N(1 + i) = 2. So, we're finished.

p 347, #6 The given set of vectors is linearly dependent over any field since

$$\left(\begin{array}{cc}2&1\\1&0\end{array}\right)+\left(\begin{array}{cc}0&1\\1&2\end{array}\right)-2\left(\begin{array}{cc}1&1\\1&1\end{array}\right)=\left(\begin{array}{cc}0&0\\0&0\end{array}\right).$$

p 348, #8 If $\{v_1, v_2, \ldots, v_n\}$ is linearly dependent in a vector space V over F then there exist $a_1, a_2, \ldots, a_n \in F$, not all zero, so that $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$. By reordering we can assume that $a_1 \neq 0$. Then we have $a_1v_1 = -a_2v_2 - \cdots - a_nv_n$ and multiplying both sides by a_1^{-1} yields $v_1 = (-a_1^{-1}a_2)v_2 + \cdots + (-a_1^{-1}a_n)v_n$, proving that v_1 is a linear combination of v_2, v_3, \ldots, v_n .

p 348, **#16** We see that

$$V = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \middle| a, b, c \in \mathbb{Q} \right\}$$
$$= \left\{ a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{Q} \right\}$$
$$= \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle$$

which proves that V is a vector space. We claim that

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \right\}$$

is a basis for V. According to what we've already done, it suffices to show that this set is linearly independent. Suppose that $a, b, c \in \mathbb{Q}$ satsify

$$a\left(\begin{array}{rrr}1&0\\0&0\end{array}\right)+b\left(\begin{array}{rrr}0&1\\1&0\end{array}\right)+c\left(\begin{array}{rrr}0&0\\0&1\end{array}\right)=\left(\begin{array}{rrr}0&0\\0&0\end{array}\right).$$

Then, after adding the matrices on the left, we have

$$\left(\begin{array}{cc}a&b\\b&c\end{array}\right) = \left(\begin{array}{cc}0&0\\0&0\end{array}\right)$$

which implies a = b = c = 0. This proves that the three matrices in question are linearly independent and completes the exercise.

p 348, **#18** We have

$$P = \{(a, b, c) \mid a, b, c \in \mathbb{R}, a = 2b + 3c\} \\ = \{(2b + 3c, b, c) \mid b, c \in \mathbb{R}\} \\ = \{b(2, 1, 0) + c(3, 0, 1) \mid b, c \in \mathbb{R}\} \\ = \langle (2, 1, 0), (3, 0, 1) \rangle$$

which proves that P is a subspace of \mathbb{R}^3 . To prove that the set $\{(2, 1, 0), (3, 0, 1)\}$ is a basis for P it therefore suffices to prove that this set is linearly independent over \mathbb{R} . So let $b, c \in \mathbb{R}$ and suppose

$$b(2,1,0) + c(3,0,1) = (0,0,0).$$

Then

$$(2b+3c, b, c) = (0, 0, 0)$$

which implies b = c = 0 and proves that the vectors in question are linearly independent.

p 349, #24 We first deal with $U \cap W$. This set is nonempty since $0 \in U$ and $0 \in W$ implies $0 \in U \cap W$. Given $u, v \in U \cap W$, $u+v \in U$ and $u+v \in W$ since both U and W are subspaces of V. Therefore $u+v \in U \cap W$. Furthermore, if $a \in F$ then $au \in U$ and $au \in W$, again because both U and W are subspaces of V. It follows from the subspace test mentioned in class that $U \cap W$ is a subspace of V.

We now turn to U + W. As above, this set is nonempty since $0 \in U$ and $0 \in W$ implies $0 = 0 + 0 \in U + W$. Let $x, y \in U + W$. Then there exist $u_1, u_2 \in U$ and $w_1, w_2 \in W$ so that $x = u_1 + w_1$ and $y = u_2 + w_2$. Thus

$$x + y = (u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2) \in U + W$$

since the fact that U and W are subspaces implies $u_1 + u_2 \in U$ and $w_1 + w_2 \in W$. Moreover, if $a \in F$ then

$$ax = a(u_1 + w_1) = au_1 + aw_1 \in U + W$$

since, again, $au_1 \in U$ and $aw_1 \in W$. As above, this proves that U + W is a subspace of V.