Homework \#9 Solutions

Handout, \#1 As suggested, we induct on m. When $m=1$ we must prove the following statement: if $p_{1}, q_{1}, \ldots, q_{n} \in D\left(n \in \mathbb{Z}^{+}\right)$are primes and $p_{1}=q_{1} q_{2} \cdots q_{n}$ then $n=1$. So, suppose we have the stated hypotheses and assume that $n \geq 2$. Since p_{1} is prime and divides $q_{1} \cdots q_{n}$ it divides q_{1} (without loss of generality). So $q_{1}=a p_{1}$ for some $a \in D$. But then the irreducibility of q_{1} implies that a is a unit (since p_{1} is not). Therefore we have

$$
\begin{aligned}
p_{1} & =\left(a p_{1}\right) q_{2} \cdots q_{n} \\
& =p_{1} a q_{2} \cdots q_{n} .
\end{aligned}
$$

As we are working in a domain we can cancel p_{1} from both sides to obtain $1=a q_{2} \cdots q_{n}$, implying that q_{2} is a unit. As q_{2} is prime this is a contradiction and we conclude therefore that our assumption that $n \geq 2$ is false. Thus, $n=1$ and $p_{1}=q_{1}$.

We now prove the induction step. Let $m \in \mathbb{Z}^{+}$be at least 2 and assume that the statement of the problem is true for $m-1$ and any $n \in \mathbb{Z}^{+}$. Let $p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{n} \in D\left(n \in \mathbb{Z}^{+}\right)$ be primes with $p_{1} p_{2} \cdots p_{m}=q_{1} q_{2} \cdots q_{n}$. Since p_{m} is prime and divides $q_{1} \cdots q_{n}$ it divides q_{n} (without loss of generality). Since p_{m} and q_{n} are both primes (and hence irreducible) we may argue as above and conclude that p_{m} and q_{n} are associate. Writing $q_{n}=a p_{m}$ for some unit $a \in D$ we have

$$
\begin{aligned}
p_{1} \cdots p_{m} & =q_{1} q_{2} \cdots q_{n-1}\left(a p_{m}\right) \\
& =\left(a q_{1}\right) q_{2} \cdots q_{n-1} p_{m} .
\end{aligned}
$$

Since D is a domain we can cancel p_{m} to obtain $p_{1} \cdots p_{m-1}=\left(a q_{1}\right) q_{2} \cdots q_{n-1}$. Since $a q_{1}$ is also prime, the induction hypothesis implies that $m-1=n-1$ and (after reordering) p_{1} is associate to $a q_{1}$ and p_{i} is associate to q_{i} for $i=2, \ldots, m-1$. But this means that $m=n$ and p_{i} is associate to q_{i} for every i. That is, the statement of the exercise is true for $m \geq 2$ if it is true for $m-1$.

Finally, mathematical induction allows us to conclude that the statement of the exercise holds for all $m ı n \mathbb{Z}^{+}$.

Handout, \#2 a. We use the ideal test. First, $I \neq \emptyset$ since $0 \in I_{1} \subset I$. Let $a, b \in I$ and $r \in R$. Then there are $i, j \in \mathbb{Z}^{+}$so that $a \in I_{i}$ and $b \in I_{j}$. Without loss of generality we can assume that $i \leq j$. Then $I_{i} \subset I_{j}$ so that $a \in I_{j}$. Since I_{j} is an ideal, $a-b \in I_{j} \subset I$ and $r a \in I_{j} \subset I$. Since $a, b \in I$ and $r \in R$ were arbitrary, this proves that I is an ideal.
b. If R has an identity and each I_{j} is proper then $1 \notin I_{j}$ for every $j \in \mathbb{Z}^{+}$. It follows that $1 \not t t I$ and therefore that $I \neq R$, i.e. I is a proper ideal.
p 335, \#38 The ideals

$$
I_{n}=\underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{n \text { times }} \oplus 0 \oplus 0 \oplus \cdots
$$

work.
p 340, $\# \mathbf{2 4}$ We start by noticing $13=3^{2}+2^{2}=(3+2 i)(3-2 i)$. Since $N(3+2 i)=$ $N(3-2 i)=13$ is prime, both $3+2 i$ and $3-2 i$ are irreducible in $\mathbb{Z}[i]$, and so we have found the desired factorization.

Now we note that

$$
\frac{5+i}{1+i}=\frac{(5+i)(1-i)}{(1+i)(1-i)}=\frac{6-4 i}{2}=3-2 i
$$

so that $5+i=(1+i)(3-2 i)$. We have already seen that $3-2 i$ is irreducible and $1+i$ is, too, since $N(1+i)=2$. So, we're finished.
p 347, \#6 The given set of vectors is linearly dependent over any field since

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right)-2\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

p 348, \#8 If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly dependent in a vector space V over F then there exist $a_{1}, a_{2}, \ldots, a_{n} \in F$, not all zero, so that $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0$. By reordering we can assume that $a_{1} \neq 0$. Then we have $a_{1} v_{1}=-a_{2} v_{2}-\cdots-a_{n} v_{n}$ and multiplying both sides by a_{1}^{-1} yields $v_{1}=\left(-a_{1}^{-1} a_{2}\right) v_{2}+\cdots+\left(-a_{1}^{-1} a_{n}\right) v_{n}$, proving that v_{1} is a linear combination of $v_{2}, v_{3}, \ldots, v_{n}$.
p 348, \#16 We see that

$$
\begin{aligned}
V & =\left\{\left.\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Q}\right\} \\
& =\left\{\left.a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Q}\right\} \\
& =\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\rangle
\end{aligned}
$$

which proves that V is a vector space. We claim that

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

is a basis for V. According to what we've already done, it suffices to show that this set is linearly independent. Suppose that $a, b, c \in \mathbb{Q}$ satsify

$$
a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Then, after adding the matrices on the left, we have

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

which implies $a=b=c=0$. This proves that the three matrices in question are linearly independent and completes the exercise.
p 348, \#18 We have

$$
\begin{aligned}
P & =\{(a, b, c) \mid a, b, c \in \mathbb{R}, a=2 b+3 c\} \\
& =\{(2 b+3 c, b, c) \mid b, c \in \mathbb{R}\} \\
& =\{b(2,1,0)+c(3,0,1) \mid b, c \in \mathbb{R}\} \\
& =\langle(2,1,0),(3,0,1)\rangle
\end{aligned}
$$

which proves that P is a subspace of \mathbb{R}^{3}. To prove that the set $\{(2,1,0),(3,0,1)\}$ is a basis for P it therefore suffices to prove that this set is linearly independent over \mathbb{R}. So let $b, c \in \mathbb{R}$ and suppose

$$
b(2,1,0)+c(3,0,1)=(0,0,0)
$$

Then

$$
(2 b+3 c, b, c)=(0,0,0)
$$

which implies $b=c=0$ and proves that the vectors in question are linearly independent.
p 349, \#24 We first deal with $U \cap W$. This set is nonempty since $0 \in U$ and $0 \in W$ implies $0 \in U \cap W$. Given $u, v \in U \cap W, u+v \in U$ and $u+v \in W$ since both U and W are subspaces of V. Therefore $u+v \in U \cap W$. Furthermore, if $a \in F$ then $a u \in U$ and $a u \in W$, again because both U and W are subspaces of V. It follows from the subspace test mentioned in class that $U \cap W$ is a subspace of V.

We now turn to $U+W$. As above, this set is nonempty since $0 \in U$ and $0 \in W$ implies $0=0+0 \in U+W$. Let $x, y \in U+W$. Then there exist $u_{1}, u_{2} \in U$ and $w_{1}, w_{2} \in W$ so that $x=u_{1}+w_{1}$ and $y=u_{2}+w_{2}$. Thus

$$
x+y=\left(u_{1}+w_{1}\right)+\left(u_{2}+w_{2}\right)=\left(u_{1}+u_{2}\right)+\left(w_{1}+w_{2}\right) \in U+W
$$

since the fact that U and W are subspaces implies $u_{1}+u_{2} \in U$ and $w_{1}+w_{2} \in W$. Moreover, if $a \in F$ then

$$
a x=a\left(u_{1}+w_{1}\right)=a u_{1}+a w_{1} \in U+W
$$

since, again, $a u_{1} \in U$ and $a w_{1} \in W$. As above, this proves that $U+W$ is a subspace of V.

