Homework #9 Solutions

Handout, #1 As suggested, we induct on m. When m = 1 we must prove the following
statement: if p1,q1,...,¢, € D (n € Z*1) are primes and p; = ¢1¢2- - - ¢, then n = 1. So,
suppose we have the stated hypotheses and assume that n > 2. Since p; is prime and divides
¢1 -+ qn it divides ¢; (without loss of generality). So ¢; = ap; for some a € D. But then the
irreducibility of ¢; implies that a is a unit (since p; is not). Therefore we have

P = (ap1>Q2"'CIn
= Dpi1aqz - - - Qn.

As we are working in a domain we can cancel p; from both sides to obtain 1 = aqs - - - ¢y,
implying that g, is a unit. As ¢ is prime this is a contradiction and we conclude therefore
that our assumption that n > 2 is false. Thus, n =1 and p; = ¢;.

We now prove the induction step. Let m € Z* be at least 2 and assume that the statement
of the problem is true for m — 1 and any n € Z*. Let p1,...,pm,q1,---,qn € D (n € ZT)
be primes with p1ps - pm = q1G2 - - - ¢n. Since p,, is prime and divides ¢ - - - ¢, it divides ¢,
(without loss of generality). Since p,, and ¢, are both primes (and hence irreducible) we
may argue as above and conclude that p,, and ¢, are associate. Writing ¢, = ap,,, for some
unit a € D we have

P Pm = QG2 Gn-1(aPm)
= (GQI)qQ"'qn—lpm'

Since D is a domain we can cancel p,, to obtain p; -« pn_1 = (aq1)qa - - - Gn_1. Since agq; is
also prime, the induction hypothesis implies that m — 1 =n — 1 and (after reordering) p; is
associate to ag; and p; is associate to ¢; for ¢ = 2,...,m — 1. But this means that m = n
and p; is associate to ¢; for every ¢. That is, the statement of the exercise is true for m > 2
if it is true for m — 1.

Finally, mathematical induction allows us to conclude that the statement of the exercise
holds for all manZ™.

Handout, #2 a. We use the ideal test. First, I # () since 0 € I C I. Let a,b € I and
r € R. Then there are i, j € Z" so that a € I; and b € I;. Without loss of generality we can
assume that ¢ < j. Then I; C I; so that a € I;. Since I; is an ideal, a — b € I; C I and
ra € I; C I. Since a,b € I and r € R were arbitrary, this proves that I is an ideal.

b. If R has an identity and each I; is proper then 1 & I, for every j € Z*. It follows that
1 ftI and therefore that I # R, i.e. I is a proper ideal.

p 335, #38 The ideals
[,=20Z® - ®ZO0B0D -
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p 340, #24 We start by noticing 13 = 3% + 22 = (3 + 24)(3 — 2i). Since N(3 + 2i) =
N(3 —2i) = 13 is prime, both 3+ 2i and 3 — 2 are irreducible in Z[i], and so we have found
the desired factorization.
Now we note that
54i_ (GH1-i) _6-4i _,
1+i (1+91-9) 2
so that 544 = (1 +)(3 — 2i). We have already seen that 3 — 2i is irreducible and 1+ i is,
too, since N(1 + i) = 2. So, we're finished.

p 347, #6 The given set of vectors is linearly dependent over any field since
2 1 0 1 11 0 0
+ —2 = :
( 10 ) ( 1 2 ) ( 11 ) ( 0 0 )

p 348, #8 If {vy,vq,...,v,} is linearly dependent in a vector space V over F' then there
exist ay,as,...,a, € F, not all zero, so that a,v; 4+ asvs + - - - + a,v, = 0. By reordering we
can assume that a; # 0. Then we have a,v; = —agvy — - - - — a,,v, and multiplying both sides
by a;' yields v; = (—a;'ag)vy + - -+ + (—ay 'an)v,, proving that v; is a linear combination
of vg,v3,...,v,.

p 348, #16 We see that

() M
() () (2

which proves that V' is a vector space. We claim that

o) (Vo) (20}

is a basis for V. According to what we’ve already done, it suffices to show that this set is
linearly independent. Suppose that a, b, c € Q satsify

()G




Then, after adding the matrices on the left, we have

(00)-(0)

which implies a = b = ¢ = 0. This proves that the three matrices in question are linearly
independent and completes the exercise.

p 348, #18 We have

P = {(a,b,c)|a,b,c € Rja=2b+ 3c}

{(2b+ 3¢,b,¢) | b,c € R}

= {b(2,1,0) +¢(3,0,1) | b,c € R}
((2,1,0),(3,0,1))

which proves that P is a subspace of R3. To prove that the set {(2,1,0),(3,0,1)} is a basis
for P it therefore suffices to prove that this set is linearly independent over R. So let b,c € R
and suppose

b(2,1,0) + ¢(3,0,1) = (0,0,0).

Then
(2b + 3¢, b,¢) = (0,0,0)

which implies b = ¢ = 0 and proves that the vectors in question are linearly independent.

p 349, #24 We first deal with U NW. This set is nonempty since 0 € U and 0 € W implies
0eUNW. Givenu,v € UNW, u+v € U and u+v € W since both U and W are subspaces
of V. Therefore u +v € UNW. Furthermore, if a € F then au € U and au € W, again
because both U and W are subspaces of V. It follows from the subspace test mentioned in
class that U N W is a subspace of V.

We now turn to U + W. As above, this set is nonempty since 0 € U and 0 € W implies
0=04+0c€U+W. Let x,y € U+ W. Then there exist uy,us € U and wy,wy € W so that
r =uy +w; and y = ugy + wy. Thus

r+y = (ur +wy) + (ug +wz) = (ug +u) + (w1 +wy) €U+ W

since the fact that U and W are subspaces implies u; +uy € U and wy +wo € W. Moreover,
if a € F then
ar = a(u; + wy) = au; +awy; € U+ W

since, again, au; € U and aw; € W. As above, this proves that U + W is a subspace of V.



