Partial Fractions

Exercise 1. Let F be a field and $f(x), g(x) \in F[x]$ be nonzero polynomials. Suppose that $f(x)$ and $g(x)$ are relatively prime, i.e. that if $h(x) \in F[x]$ divides both $f(x)$ and $g(x)$ then $h(x)$ is a nonzero constant. Prove that there exist $r(x), s(x) \in F[x]$ so that $r(x) f(x)+s(x) g(x)=1$.

Exercise 2.(Partial Fractions I) Let F be a field and $c(x), f(x), g(x) \in F[x]$ be nonzero polynomials. Prove that if $f(x)$ and $g(x)$ are relatively prime and $\operatorname{deg} c(x)<\operatorname{deg} f(x) g(x)$ then there exist $r(x), s(x) \in F[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} f(x)$ and $\operatorname{deg} s(x)<\operatorname{deg} g(x)$ so that

$$
\frac{c(x)}{f(x) g(x)}=\frac{r(x)}{f(x)}+\frac{s(x)}{g(x)}
$$

in $F(x)$.

Exercise 3. (Partial Fractions II) Let F be a field and $c(x), f(x) \in F[x]$ be nonzero polynomials. Prove that if $\operatorname{deg} c(x)<\operatorname{deg} f(x)^{2}$ then there exist $r(x), s(x) \in F[x]$ with $\operatorname{deg} r(x), \operatorname{deg} s(x)<$ $\operatorname{deg} f(x)$ so that

$$
\frac{c(x)}{f(x)^{2}}=\frac{r(x)}{f(x)^{2}}+\frac{s(x)}{f(x)}
$$

in $F(x)$.

