Modern Algebra II Spring 2007

PARTIAL FRACTIONS

Exercise 1. Let F be a field and $f(x), g(x) \in F[x]$ be nonzero polynomials. Suppose that f(x) and g(x) are relatively prime, i.e. that if $h(x) \in F[x]$ divides both f(x) and g(x) then h(x) is a nonzero constant. Prove that there exist $r(x), s(x) \in F[x]$ so that r(x)f(x) + s(x)g(x) = 1.

Exercise 2.(Partial Fractions I) Let F be a field and $c(x), f(x), g(x) \in F[x]$ be nonzero polynomials. Prove that if f(x) and g(x) are relatively prime and $\deg c(x) < \deg f(x)g(x)$ then there exist $r(x), s(x) \in F[x]$ with $\deg r(x) < \deg f(x)$ and $\deg s(x) < \deg g(x)$ so that

$$\frac{c(x)}{f(x)g(x)} = \frac{r(x)}{f(x)} + \frac{s(x)}{g(x)}$$

in F(x).

Exercise 3. (Partial Fractions II) Let F be a field and $c(x), f(x) \in F[x]$ be nonzero polynomials. Prove that if deg $c(x) < \deg f(x)^2$ then there exist $r(x), s(x) \in F[x]$ with deg $r(x), \deg s(x) < \deg f(x)$ so that

$$\frac{c(x)}{f(x)^2} = \frac{r(x)}{f(x)^2} + \frac{s(x)}{f(x)}$$

in F(x).