FACTORIZATION

Exercise 1. Let D be an integral domain. Prove that if $p_{1}, p_{2}, \ldots, p_{m}, q_{1}, q_{2}, \ldots, q_{n} \in$ $D\left(m, n \in \mathbb{Z}^{+}\right)$are primes and $p_{1} p_{2} \cdots p_{m}=q_{1} q_{2} \cdots q_{n}$ then $m=n$ and, after possibly reordering, p_{i} and q_{i} are associates for $i=1,2, \ldots, m$. [Suggestion: Induct on m.]

Exercise 2. Let R be a ring and let $I_{1} \subset I_{2} \subset I_{3} \subset \cdots$ be an ascending chain of ideals in R and let

$$
I=\bigcup_{j=1}^{\infty} I_{j}
$$

a. Prove that I is an ideal in R.
b. If R has an identity and each I_{j} is proper, prove that I is also proper.

Exercise 3. Page 335, \# 38

Exercise 4. Page 340, \# 24

