Roots of Polynomials

Exercise 1. Let F be a field of characteristic $p \neq 0$. Prove that $x^{p^{n}}-x \in F[x]$ does not have multiple zeros in any extension of F.

Exercise 2. Prove that $f(x)^{p}=f\left(x^{p}\right)$ for any $f(x) \in \mathbb{Z}_{p}[x]$ (p a prime).

Exercise 3. Prove that for any prime p the polynomial $g(x)=x^{p}-x+1$ is irreducible over \mathbb{Z}_{p}. [Hint: Start by showing that if α is a root of $g(x)$ in some extension of \mathbb{Z}_{p} then so is $\alpha+1$.]

