
Modern Algebra II
Spring 2007 Roots of Irreducible Polynomials

In this series of exercises we will prove the following. This is a stronger version of the
corollary to Theorem 20.9.

Theorem 1. Let F be a field of characteristic p > 0, f(x) ∈ F [x] an irreducible polynomial.
If E is a splitting field for f(x) over F and a1, a2, . . . , am are the (distinct) roots of f(x) in
E, then there is an integer n ≥ 0 so that

f(x) = c(x− a1)
pn

(x− a2)
pn · · · (x− am)pn

.

for some c ∈ F . In particular, all the zeros of f(x) have the same multiplicity.

Throughout what follows, F is a field of characteristic p > 0, f(x) ∈ F [x] is an irreducible
polynomial, and E is a splitting field for f(x) over F .

Exercise 1. Prove that there exists an integer n ≥ 0 and an irreducible polynomial g(x) ∈
F [x], all of whose roots have multiplicity 1, so that f(x) = g(xpn

). [Suggestion 1: If f(x)
has multiple roots, repeatedly apply Theorem 20.6. Suggestion 2: Let n ≥ 0 be the largest
integer so that pn divides all the exponents of the powers of x appearing in f(x). ]

Exercise 2. Let g(x) be the polynomial of exercise 1 and let K be an extension of E
containing the distinct roots b1, b2, . . . , bm of g(x).

a. Show that
f(x) = c(xpn − b1)(x

pn − b2) · · · (xpn − bm)

for some c ∈ F .

b. Let a ∈ E be a root of f(x). Show that apn
= bi for some i.

c. Show that f(x) has exactly m distinct roots in E.

Exercise 3. Let a1, a2, . . . , am ∈ E be the distinct roots of f(x). Show that

f(x) = c(x− a1)
pn

(x− a2)
pn · · · (x− am)pn

,

completing the proof of the theorem.
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