Modern Algebra II

Spring 2007

Roots of Irreducible Polynomials

In this series of exercises we will prove the following. This is a stronger version of the corollary to Theorem 20.9.

Theorem 1. Let F be a field of characteristic $p>0, f(x) \in F[x]$ an irreducible polynomial. If E is a splitting field for $f(x)$ over F and $a_{1}, a_{2}, \ldots, a_{m}$ are the (distinct) roots of $f(x)$ in E, then there is an integer $n \geq 0$ so that

$$
f(x)=c\left(x-a_{1}\right)^{p^{n}}\left(x-a_{2}\right)^{p^{n}} \cdots\left(x-a_{m}\right)^{p^{n}} .
$$

for some $c \in F$. In particular, all the zeros of $f(x)$ have the same multiplicity.
Throughout what follows, F is a field of characteristic $p>0, f(x) \in F[x]$ is an irreducible polynomial, and E is a splitting field for $f(x)$ over F.

Exercise 1. Prove that there exists an integer $n \geq 0$ and an irreducible polynomial $g(x) \in$ $F[x]$, all of whose roots have multiplicity 1, so that $f(x)=g\left(x^{p^{n}}\right)$. [Suggestion 1: If $f(x)$ has multiple roots, repeatedly apply Theorem 20.6. Suggestion 2: Let $n \geq 0$ be the largest integer so that p^{n} divides all the exponents of the powers of x appearing in $f(x)$.]

Exercise 2. Let $g(x)$ be the polynomial of exercise 1 and let K be an extension of E containing the distinct roots $b_{1}, b_{2}, \ldots, b_{m}$ of $g(x)$.
a. Show that

$$
f(x)=c\left(x^{p^{n}}-b_{1}\right)\left(x^{p^{n}}-b_{2}\right) \cdots\left(x^{p^{n}}-b_{m}\right)
$$

for some $c \in F$.
b. Let $a \in E$ be a root of $f(x)$. Show that $a^{p^{n}}=b_{i}$ for some i.
c. Show that $f(x)$ has exactly m distinct roots in E.

Exercise 3. Let $a_{1}, a_{2}, \ldots, a_{m} \in E$ be the distinct roots of $f(x)$. Show that

$$
f(x)=c\left(x-a_{1}\right)^{p^{n}}\left(x-a_{2}\right)^{p^{n}} \cdots\left(x-a_{m}\right)^{p^{n}},
$$

completing the proof of the theorem.

