In this series of exercises we will prove the following. This is a stronger version of the corollary to Theorem 20.9.

Theorem 1. Let F be a field of characteristic p > 0, $f(x) \in F[x]$ an irreducible polynomial. If E is a splitting field for f(x) over F and a_1, a_2, \ldots, a_m are the (distinct) roots of f(x) in E, then there is an integer $n \ge 0$ so that

$$f(x) = c(x - a_1)^{p^n} (x - a_2)^{p^n} \cdots (x - a_m)^{p^n}.$$

for some $c \in F$. In particular, all the zeros of f(x) have the same multiplicity.

Throughout what follows, F is a field of characteristic p > 0, $f(x) \in F[x]$ is an irreducible polynomial, and E is a splitting field for f(x) over F.

Exercise 1. Prove that there exists an integer $n \ge 0$ and an irreducible polynomial $g(x) \in F[x]$, all of whose roots have multiplicity 1, so that $f(x) = g(x^{p^n})$. [Suggestion 1: If f(x) has multiple roots, repeatedly apply Theorem 20.6. Suggestion 2: Let $n \ge 0$ be the largest integer so that p^n divides all the exponents of the powers of x appearing in f(x).]

Exercise 2. Let g(x) be the polynomial of exercise 1 and let K be an extension of E containing the distinct roots b_1, b_2, \ldots, b_m of g(x).

a. Show that

$$f(x) = c(x^{p^n} - b_1)(x^{p^n} - b_2) \cdots (x^{p^n} - b_m)$$

for some $c \in F$.

- b. Let $a \in E$ be a root of f(x). Show that $a^{p^n} = b_i$ for some *i*.
- c. Show that f(x) has exactly m distinct roots in E.

Exercise 3. Let $a_1, a_2, \ldots, a_m \in E$ be the distinct roots of f(x). Show that

$$f(x) = c(x - a_1)^{p^n} (x - a_2)^{p^n} \cdots (x - a_m)^{p^n},$$

completing the proof of the theorem.