Exercise 1. Find the minimal polynomial of $\sqrt{3+\sqrt{3}}$ over \mathbb{Q}.
Exercise 2. Let F be a field, $f(x) \in F[x]$ a polynomial of degree 4 and E a splitting field for $f(x)$ over F. Prove that $[E: F] \leq 4!=24$.

Exercise 3. Let $n, p \in \mathbb{Z}^{+}$with p prime.
a. If $g(x) \in \mathbb{Z}_{p}[x]$ is irreducible of degree dividing n, prove that $g(x)$ divides $x^{p^{n}}-x$.
b. Prove that $x^{p^{n}}-x$ is equal to the product of all of the monic irreducible polynomials in $\mathbb{Z}_{p}[x]$ whose degree divides n.

Exercise 4. If α and β are complex numbers that are transcendental over \mathbb{Q}, prove that at least one of $\alpha \beta$ and $\alpha+\beta$ is also transcendental over \mathbb{Q}. [Hint: Consider the polynomial $(x-\alpha)(x-\beta)$ and argue by contradiction.]

Exercise 5. Let $p \in \mathbb{Z}^{+}$be a prime. Let E / F be a field extension of degree p. If a is an element of E not in F, prove that the minimal polynomial of a over F has degree p.

Exercise 6. Let $p \in \mathbb{Z}^{+}$be a prime, $F=\operatorname{GF}(p)$ and $f(x) \in F[x]$ be irreducible. If a is a root of $f(x)$ in some extension of F, prove that $F(a)$ is a splitting field for $f(x)$.

Exercise 7. Let F be a field of characteristic 0 and let $f(x) \in F[x]$ be irreducible. Prove that $f(x)$ cannot have multiple zeros.

Exercise 8. Prove that $\pi^{2}-1$ is algebraic over $\mathbb{Q}\left(\pi^{3}\right)$.
Exercise 9. Recall that an idempotent in a ring R with unity is an element $a \in R$ so that $a^{2}=a$. Let p be an odd prime and let $k \in \mathbb{Z}^{+}$. Show that the only idempotents in $\mathbb{Z}_{p^{k}}$ are $a=0,1$.

Exercise 10. Let R be a ring and let I, J be nonzero ideals in R. If $I \cap J=\{0\}$, prove that the nonzero elements of I and J are zero divisors in R. [Hint: What happens if you multiply an element in I by an element in J ?]

Exercise 11. Let F be a field. Define what it means for a set V to be a vector space over F. Define the terms linearly dependent, linearly independent and basis.

