3.3.2 We have
\[
\frac{1}{z(z + 1)} = \frac{1}{z} \frac{1}{z + 1} = \frac{1}{z^2} \frac{1}{1 + 1/z} = \frac{1}{z^2} \sum_{n=0}^{\infty} \frac{(-1)^n}{z^n}
\]
since \(|z| > 1\) implies that \(|1/z| < 1\). Multiplying the \(1/z^2\) into the series and reindexing we have
\[
\frac{1}{z(z + 1)} = \sum_{n=2}^{\infty} \frac{(-1)^n}{z^n}
\]
for \(|z| > 1\). Since Laurent series are unique, this must be the desired expansion.

3.3.4 We first note that we have the partial fraction expansion
\[
\frac{1}{z(z - 1)(z - 2)} = \frac{1}{z} \left(\frac{-1}{z - 1} + \frac{1}{z - 2} \right).
\]
(a) For \(0 < |z| < 1\) we have
\[
\frac{-1}{z - 1} = \frac{1}{1 - z} = \sum_{n=0}^{\infty} z^n
\]
and
\[
\frac{1}{z - 2} = \frac{-1}{2} \frac{1}{1 - z/2} = \frac{-1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n}
\]
Hence, in this region we have
\[
\frac{1}{z(z - 1)(z - 2)} = \frac{1}{z} \left(\sum_{n=0}^{\infty} z^n - \frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n} \right) = \frac{1}{z} \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}} \right) z^n.
\]
Multiplying the \(1/z\) through the sum and reindexing we have
\[
\frac{1}{z(z - 1)(z - 2)} = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+2}} \right) z^n + \frac{1}{2z}
\]
for \(0 < |z| < 1\). Uniqueness of Laurent series guarantees this is the desired expansion.

(b) When \(1 < |z| < 2\) we have
\[
\frac{-1}{z - 1} = \frac{-1}{z} \frac{1}{1 - 1/z} = \frac{-1}{z} \sum_{n=0}^{\infty} \frac{1}{z^n} = -\sum_{n=1}^{\infty} \frac{1}{z^n}
\]
and, as above,

\[\frac{1}{z - 2} = -\frac{1}{2} \frac{1}{1 - z/2} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n}. \]

Thus

\[\frac{1}{z(z - 1)(z - 2)} = \frac{1}{z} \left(-\sum_{n=1}^{\infty} \frac{1}{z^n} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n} \right) = -\sum_{n=0}^{\infty} \frac{z^{n-1}}{2^{n+1}} - \sum_{n=1}^{\infty} \frac{1}{z^{n+1}}. \]

Reindexing we find

\[\frac{1}{z(z - 1)(z - 2)} = -\sum_{n=0}^{\infty} \frac{z^{n+2}}{2^{n+2}} - \frac{1}{2z} - \sum_{n=2}^{\infty} \frac{1}{z^n} \]

and once again the uniqueness of Laurent series tells us that this is the expression we sought.

3.3.8 If \(f \) and \(g \) are both analytic with zeros of order \(k \) at \(z_0 \) then we can write \(f(z) = (z - z_0)^k \phi(z) \) and \(g(z) = (z - z_0)^k \psi(z) \) where \(\phi \) and \(\psi \) are analytic wherever \(f \) and \(g \) are (in particular, in some neighborhood of \(z_0 \)) and \(\phi(z_0) \neq 0, \psi(z_0) \neq 0 \). It follows that for \(z \neq z_0 \) we have

\[\frac{f(z)}{g(z)} = \frac{\phi(z)}{\psi(z)}. \]

Since \(\psi(z_0) \neq 0 \) and both \(\psi \) and \(\phi \) are continuous at \(z_0 \) we have

\[\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{\phi(z)}{\psi(z)} = \frac{\phi(z_0)}{\psi(z_0)}. \]

This proves that \(f/g \) has a removable singularity at \(z_0 \). The problem is then finished by appealing to the following result.

Proposition. Let \(f \) be analytic at \(z_0 \) with a zero of order \(k \) there. Write \(f(z) = (z - z_0)^k \phi(z) \). Then \(\phi(z) \) is analytic at \(z_0 \) and \(\phi(z_0) = f^{(k)}(z_0)/k! \).

Proof. We already know that \(\phi(z) \) is analytic at \(z_0 \). We can therefore write

\[\phi(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \]

in some neighborhood of \(z_0 \). Then

\[f(z) = (z - z_0)^k \sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=k}^{\infty} a_{n-k} (z - z_0)^n \]
in some neighborhood of \(z_0 \). Applying the uniqueness of Taylor series to this expression we find that

\[
a_0 = \frac{f^{(k)}(z_0)}{k!}.\]

On the other hand, from the original expression defining the \(a_n \) we know that \(a_0 = \phi(z_0) \). The result follows.

\[\square\]

3.3.18 The function \(e^{1/z} \) is analytic on \(\mathbb{C} \setminus \{0\} \) and therefore has an isolated singularity at \(z_0 = 0 \). Appealing to the Taylor series for \(e^{1/z} \) we find that for \(z \neq 0 \) we have

\[
e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!z^n} = 1 + \sum_{n=1}^{\infty} \frac{1/n!}{z^n}.
\]

By uniqueness, this must be the Laurent series expansion of \(e^{1/z} \) on \(\mathbb{C} \setminus \{0\} \). However, we know that the Laurent series coefficients are given by

\[
a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{1/z}}{z^{n+1}} \, dz
\]

and

\[
b_n = \frac{1}{2\pi i} \int_{\gamma} e^{1/z} z^{n-1} \, dz.
\]

Comparing to the series expression above we find that we must have

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{e^{1/z}}{z^{n+1}} \, dz = 0
\]

for \(n \geq 1 \),

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{e^{1/z}}{z} \, dz = 1
\]

and

\[
\frac{1}{2\pi i} \int_{\gamma} e^{1/z} z^{n-1} \, dz = \frac{1}{n!}
\]

for \(n \geq 1 \). Hence

\[
\int_{\gamma} z^n e^{1/z} \, dz = \begin{cases} 0 & \text{if } n \leq -2 \\ \frac{2\pi i}{(n+1)!} & \text{if } n \geq -1. \end{cases}
\]

3.R.4 Since \(e^z \) is entire, for any \(z \in \mathbb{C} \) we have

\[
f(z) = e^{z^2} = \sum_{n=0}^{\infty} \frac{(z^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{z^{2n}}{n!}.
\]
Uniqueness of Taylor series guarantees that the expression on the right is the Taylor series for e^{z^2} at the origin. In particular, this means that the coefficient of z^k appearing on the right hand side must be given by $f^{(k)}(0)/k!$. Hence

$$\frac{f^{(68)}(0)}{68!} = \frac{1}{34!}$$

or $f^{(68)}(0) = 68!/34!$.

3.R.12 Since $f(z)$ is analytic for $|z| < 1$, we know that

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$$

for all $|z| < 1$. Let $z \in \mathbb{C}$. Then, according to our hypothesis we have

$$\left| \frac{f^{(n)}(0)}{n!} z^n \right| < \frac{M^n}{n!} |z|^n = \frac{(M|z|)^n}{n!}$$

for every $n \geq 0$. The series

$$\sum_{n=0}^{\infty} \frac{(M|z|)^n}{n!}$$

converges to $e^{M|z|}$. It follows that the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$$

is absolutely convergent. Since $z \in \mathbb{C}$ was arbitrary, this means that the radius of convergence of the latter series must be infinite and hence that series represents an entire function. Since f agrees with this series for $|z| < 1$, we find that the series provides and extension of f to an entire function.