COMPLEX ANALYSIS
FarLL 2007 HOMEWORK 10: SOLUTIONS
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since |z| > 1 implies that |1/z| < 1. Multiplying the 1/2? into the series and reindexing we
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for |z] > 1. Since Laurent series are unique, this must be the desired expansion.

3.3.4 We first note that we have the partial fraction expansion
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(a) For 0 < |z| < 1 we have
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Multiplying the 1/z through the sum and reindexing we have
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for 0 < |z| < 1. Uniqueness of Laurent series guarantees this is the desired expansion.

(b) When 1 < |2| < 2 we have
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and, as above,
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Reindexing we find
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and once again the uniqueness of Laurent series tells us that this is the expression we
sought.

3.3.8 If f and g are both analytic with zeros of order k at zy then we can write f(z) =
(2 — 20)¥¢(2) and g(z) = (2 — 20)*1)(2) where ¢ and v are analytic wherever f and g are (in
particular, in some neighborhood of zy) and ¢(zy) # 0, ¥(2) # 0. It follows that for z # 2

we have
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Since ¥(z9) # 0 and both ¢ and ¢ are continuous at zy we have
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This proves that f/g has a removable singularity at z;. The problem is then finished by
appealing to the following result.

Proposition. Let f be analytic at 2y with a zero of order k there. Write f(2) = (2—20)*®(2).
Then ¢(z) is analytic at 2o and ¢(z0) = f®)(20)/k!.

Proof. We already know that ¢(z) is analytic at zy. We can therefore write
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in some neighborhood of z5. Then
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in some neighborhood of zy. Applying the uniqueness of Taylor series to this expression we
find that
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On the other hand, from the original expression defining the a, we know that ag = ¢(zo).
The result follows. O]

3.3.18 The function e'/# is analytic on C \ {0} and therefore has an isolated singularity at
29 = 0. Appealing to the Taylor series for e!/* we find that for z # 0 we have
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By uniqueness, this must be the Laurent series expansion of ¢'/* on C\ {0}. However, we
know that the Laurent series coefficients are given by
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Comparing to the series expression above we find that we must have
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3.R.4 Since €? is entire, for any z € C we have




Uniqueness of Taylor series guarantees that the expression on the right is the Taylor series
for e at the origin. In particular, this means that the coefficient of z* appearing on the
right hand side must be given by f%*)(0)/k!. Hence
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or f©)(0) = 68!/34!.

3.R.12 Since f(z) is analytic for |z| < 1, we know that
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for all |z] < 1. Let z € C. Then, according to our hypothesis we have
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for every n > 0. The series
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converges to eM?l. Tt follows that the series
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is absolutely convergent. Since z € C was arbitrary, this means that the radius of convergence
of the latter series must be infinite and hence that series represents an entire function. Since
f agrees with this series for |z| < 1, we find that the series provides and extension of f to
an entire function.




