
Complex Analysis
Fall 2007 Homework 10: Solutions

3.3.2 We have
1

z(z + 1)
=

1

z

1

z + 1
=

1

z2

1

1 + 1/z
=

1

z2

∞∑
n=0

(−1)n

zn

since |z| > 1 implies that |1/z| < 1. Multiplying the 1/z2 into the series and reindexing we
have
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for |z| > 1. Since Laurent series are unique, this must be the desired expansion.

3.3.4 We first note that we have the partial fraction expansion
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(a) For 0 < |z| < 1 we have
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Hence, in this region we have
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Multiplying the 1/z through the sum and reindexing we have
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for 0 < |z| < 1. Uniqueness of Laurent series guarantees this is the desired expansion.

(b) When 1 < |z| < 2 we have
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and, as above,
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Thus
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Reindexing we find
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and once again the uniqueness of Laurent series tells us that this is the expression we
sought.

3.3.8 If f and g are both analytic with zeros of order k at z0 then we can write f(z) =
(z− z0)

kφ(z) and g(z) = (z− z0)
kψ(z) where φ and ψ are analytic wherever f and g are (in

particular, in some neighborhood of z0) and φ(z0) 6= 0, ψ(z0) 6= 0. It follows that for z 6= z0
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Since ψ(z0) 6= 0 and both ψ and φ are continuous at z0 we have
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This proves that f/g has a removable singularity at z0. The problem is then finished by
appealing to the following result.

Proposition. Let f be analytic at z0 with a zero of order k there. Write f(z) = (z−z0)
kφ(z).

Then φ(z) is analytic at z0 and φ(z0) = f (k)(z0)/k!.
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in some neighborhood of z0. Applying the uniqueness of Taylor series to this expression we
find that

a0 =
f (k)(z0)

k!
.

On the other hand, from the original expression defining the an we know that a0 = φ(z0).
The result follows.

3.3.18 The function e1/z is analytic on C \ {0} and therefore has an isolated singularity at
z0 = 0. Appealing to the Taylor series for e1/z we find that for z 6= 0 we have
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By uniqueness, this must be the Laurent series expansion of e1/z on C \ {0}. However, we
know that the Laurent series coefficients are given by
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Comparing to the series expression above we find that we must have
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3.R.4 Since ez is entire, for any z ∈ C we have
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Uniqueness of Taylor series guarantees that the expression on the right is the Taylor series
for ez2

at the origin. In particular, this means that the coefficient of zk appearing on the
right hand side must be given by f (k)(0)/k!. Hence
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or f (68)(0) = 68!/34!.

3.R.12 Since f(z) is analytic for |z| < 1, we know that
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for all |z| < 1. Let z ∈ C. Then, according to our hypothesis we have∣∣∣∣f (n)(0)
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converges to eM |z|. It follows that the series
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is absolutely convergent. Since z ∈ C was arbitrary, this means that the radius of convergence
of the latter series must be infinite and hence that series represents an entire function. Since
f agrees with this series for |z| < 1, we find that the series provides and extension of f to
an entire function.
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