COMPLEX ANALYSIS
FarLL 2007 HOMEWORK 11: SOLUTIONS

3.3.16 If f has a zero of multiplicity k at zo then we can write f(z) =
¢ is analytic and ¢(zy) # 0. Differentiating this expression yields f'(z)
(2 — 20)¥¢'(2). Therefore

S'(2) _ Mz=2)"0() + (2= 20)'d'(z) k()
f(2) (2 — 20)*0(2) 2=z 9(2)

Since ¢(29) # 0, the function ¢'(z)/¢(2) is analytic at 2y, and therefore has a convergent
Taylor series in a neighborhood of z,. Thus

f'lz) Kk 9'(2)
f(2) _z—zo+ o(2) —Z_zo—i-ZOanZ—Zo

for all z in a deleted neighborhood of zy. Uniqueness of such expressions implies that this is
the Laurent series for f'/f in a deleted neighborhood of zy and therefore f’/f has a simple
pole at zy with residue k.

(z — 20)k¢(2), where
= (Z—Zo)’g to(z2) +

3.3.20(a) The closure of a set A is the intersection of all the closed sets that contain A.
It is not hard to show that an element belongs to the closure of A if and only if every
neighborhood of that point intersects A. Therefore, what we need to prove the following:
given any w € C and any € > 0, there exists z € U so that f(z) € D(w;e).

So, let w € C and ¢ > 0. According to the Casorati-Weierstrass Theorem, there is a
sequence zi, 29, 23, -+ € C so that z, — zy and f(z,) — w. Since zyg € U and U is open,
there is a 6 > 0 so that D(zp;0) C U. Choose Ny € Z" so that |z, — 29| <  for n > N; and
choose Ny € Z* so that |f(z,) — w| < e. Let N = max{Ny, No}. Then zy € D(zp;0) C U
and f(zn) € D(w;e). That is, zy satisfies the required conditions. Since w € C and € > 0
were arbitrary, we conclude that the necessary condition holds for all w € C and € > 0.
Thus, the closure of f(U) is C.

3.R.2 The function 1/ cos z fails to be analytic precisely where cos z = 0. The latter occurs
if and only if z = nm + 7/2 for some n € Z. Since the derivative of cosz is —sinz and
sin(nm + m/2) = (—1)" # 0, we see that cos z has simple zeros at the points z = nm + 7/2,
n € Z. Consequently, 1/ cos z has simple poles at these points.

3.R.6(a) The singularities of f(z) occur precisely when sin(7z) = 0. The function sin(7z)
is zero if and only if z € Z and so the singularities of f(z) consist precisely of the integers.
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Since the derivative of sin(nz) is mcos(nz) and 7cos(mn) = (—1)"1 # 0 we conclude that
the zeros of sin(wz) are all simple. The function 7z(1 — 2%) = 72(1 — 2)(1 + 2) has simple
zeros at z = 0, £1, as is evidenced by the given factorization. It follows that

~mz(l - 2%

f(z) =

sin(7z)

has simple poles at z € Z, z # 0,+1 and that the singularities at z = 0, &1 are removable.

3.R.18

(a) If |2] <1 then

1 1 1 1 1 > 1 o= 2"
— - = S D L N Ny
273" 1+2 "31-53 7;( )z +37;3n
Since
1) 2 — ( ) + —1 n/QZn
> —
n=0 n=0

we can combine the series above to get

1 1 ([ (=D)"+1 1
e -~ 7 _1 T'L/2 n
1+22+3—z 0(< 2 )< ) +3”+1)Z’

n=

which is valid for |z| < 1.

(b) If 1 < |z| < 3 then
11 1 1l =) (-1
1+22_221+1/22_222 ~2n _Z »2n

since |1/2%| < 1. As above, we still have

n=0
and so
1 1 Ny (R L
1122 3_2 _;3%1 +ﬂ; Z2n

(c) If |z] > 3 then as above we have




and also

1 -1 1 13" i 3n-!
= = = o
n=0 n=1

Hence

1 1 = (-t =3t
XY

+
1422 33— z2n 2Zn

n=1 n=1

and these series may be combined as in part (a) to yield single series.

3.R.20 Let g(z) = f(1/z). Since 1/z is analytic for z # 0 and f is entire, g(z) is analytic
for z # 0. Consequently ¢g has an isolated singularity at zg = 0. Notice that limz —
0g(z) =limz — 0f(1/2) = limw — oof(w) = co. From this it follows that g cannot have a
removable singularity at 0 (otherwise the limit would be finite) and that g cannot have an
essential singularity at 0 (otherwise the limit could not exist). The only remaining option is
that g has a pole at 0. The Laurent expansion of g at 0 then takes the form

b,
Zanz + —
n= 1

for some n € Z*. Since g is analytic on C\ {0}, the equality above is valid for all z # 0. In
particular, if z # 0 then 1/z # 0 and

FE) =g1/2) =3 "4 3 b,

which gives the Laurent expansion for f at 0. Since f is analytic at zero is must be the case
that a,, = 0 for all n > 1 (otherwise f would have a pole or essential singularity at 0). But

then we have .
z) = agp + Z b,2".
n=1

That is, f is a polynomial.

4.1.1

(a) The function sinz has a simple zero at zy = 0 since sin0 = 0 but cos0 = 1 # 0.
However, e* — 1 also has a zero at zy = 0, which means that (e* — 1)/sinz has a
removable singularity at zp = 0. Consequently, the residue there is 0.



(b) The function e* — 1 has a simple zero at zy = 0 since e — 1 vanishes at that point but its
derivative, e*, does not. Therefore 1/(e* — 1) has a simple pole at zp = 0 with residue

=1
2=0

eZ
by Proposition 4.1.2.

(c) Since 22 — 2z = z(z — 2), we see that z? — 2z has a simple zero at zy = 0. Since z + 2
is nonzero at this point, we conclude that (z + 2)/(2* — 22) has a simple pole at zo = 0

with residue
z4+2

22 — 2

‘ N _17
z=0

again by Proposition 4.1.2.

(d) 2* has a zero of order 4 at 0 and e* + 1 is nonzero at 0 so that (e* + 1)/2* must have a
pole of order 4 at 0. The residue can be computed using Proposition 4.1.6:

z 1 1 3
Res (i; O> d 1+¢€%)

o 0) =51 gl

2=0

(e) Since (22 — 1) = (z — 1)%(2 + 1)?, (2* — 1)? has a double zero at 2y = 1. Since €* is

nonzero at 1, we conclude that

e
(17
has a double pole at zyg = 1 with residue
i(z — 1)2—ez _d_e | _-Dep 0.
dz (22-1)2|,_, dz(z+1)%| _, (z+1)3 1],

4.1.2

. 2 . . . . .
(a) Since e*” is nonzero everywhere, the pole is simple and the residue is

22

e
li —1
zlil}(Z )z—l

= €.

(b) The function in question is analytic at 0 and so the residue there is 0.

(c) Let f(z) = cosz—1. Since f(0) =0, f’(0) = 0and f”(0) = 1, we find that f has a double
zero at 0. Since g(z) = z has a simple zero at 0, it follows that f(z)/g(z) = (cosz—1)/z
has a removable singularity at 0 (and that, in fact, when we remove the singularity
the function has a simple zero at 0). Therefore (cosz — 1)?/2? also has a removable
singularity at 0 and so the residue at 0 is 0.



(d) i = ¢™/? is a simple zero of z* — 1 (since it is not a zero of the derivative) and is not a
zero of 2%, so it follows that z2/(z% — 1) has simple zero at i with residue

4.1.8

(a) The zeros of € — 1 occur at z = 2nmi, n € Z, and are all simple since the derivative,
e*, of e — 1 does not vanish at these points. Therefore we can compute the residue of
1/(e* — 1) at z = 2nmi using Proposition 4.1.2:

1 1
Res( ;2nm') = —
e —1 e*

(b) The chain rule tells us that the only point at which sin(1/z) fails to be analytic is z = 0.
Since sin z is entire it equals its Taylor series centered at the origin at every point. In
particular, this means that for z # 0 we have

Siné — i% G)%H

n=0

=1.

z=2nmi

This expression gives the Laurent expansion of sin(1/z) on C\ {0} and shows both that
the singularity at z; = 0 is essential and that the residue at that point is 1.

4.2.2 Let f(z) be analytic on a connected open set A and let 7 be any closed curve in A
homotopic to a point in A. Let zp € A with zy & . The function f(z)/(z — zo) is analytic
on A\ {20} with residue f(z) at zp. The Residue Theorem then immediately gives

(2) dz = 2mil (7y; z9) Res (L)), zo) = 2mil (7; 20) f (20)

y 2= 20 (z — 2o

which is precisely the statement of Cauchy’s Integral Formula.

4.2.3 The function z/(2%+22z+5) has singularities where 22 +2z+5 = 0, i.e. at 2 = —1424.
Since neither of these points lie inside the unit circle, the function z/(z? + 2z + 5) is analytic
inside and on the unit circle and so by Cauchy’s Theorem we have

z
———dz=0.
/|Z|:122+22—|—5 :
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4.2.4 According to problem 4.1.8(a), the function 1/(e* — 1) has simple poles of residue 1
at the points z = 2nmi for n € Z. If ~y is the circle of radius 9 centered at 0 then v contains
only the poles 0, +27:. Hence

e —1

d
/ © —2mi(141+1) = 6mi.
Y

4.2.5 The function tan z = sin z/ cos z has singularities where cos z = 0, i.e. at the points
z =m/2+nm for n € Z. Since sin z is nonzero at these points we conclude that these are all
simple zeros of cos z and simple poles of sin z/ cos z. For n € Z we have

Res (sz‘ T mr) _ sin(7w/2 + nm)

cosz’ 2 T sin(n/2 +nm)

If 7 is the circle of radius 8 centered at 0 then v contains only the singularities /2 + nz for
n=-—3,—2,—1,0,1,2 and therefore

/tanzdz =2mi(—1+ -1+ —-1+—-1+—-1+—-1)=—12mi.
gl

4.2.6 The singularities of (52 — 2)/z(z — 1) occur at z = 0 and z = 1 and since these are
both simple zeros of the denominator (but not zeros of the numerator) these are both simple

poles. The residues are
5z — 2 -2
Res (z(z—l)’()) =

5z — 2 3
— 1| =-=3.
Res(z(z—l)’ ) ] 3

Therefore, if v is any circle which contains both z = 0 and z = 1 then

and

By — 2
/Z—dz = 27i(2 + 3) = 107i.
L 2(z—1)



