
Complex Analysis
Fall 2007 Homework 11: Solutions

3.3.16 If f has a zero of multiplicity k at z0 then we can write f(z) = (z − z0)
kφ(z), where

φ is analytic and φ(z0) 6= 0. Differentiating this expression yields f ′(z) = k(z− z0)
k−1φ(z) +

(z − z0)
kφ′(z). Therefore

f ′(z)

f(z)
=

k(z − z0)
k−1φ(z) + (z − z0)

kφ′(z)

(z − z0)kφ(z)
=

k

z − z0

+
φ′(z)

φ(z)
.

Since φ(z0) 6= 0, the function φ′(z)/φ(z) is analytic at z0 and therefore has a convergent
Taylor series in a neighborhood of z0. Thus

f ′(z)

f(z)
=

k

z − z0

+
φ′(z)

φ(z)
=

k

z − z0

+
∞∑

n=0

an(z − z0)
n.

for all z in a deleted neighborhood of z0. Uniqueness of such expressions implies that this is
the Laurent series for f ′/f in a deleted neighborhood of z0 and therefore f ′/f has a simple
pole at z0 with residue k.

3.3.20(a) The closure of a set A is the intersection of all the closed sets that contain A.
It is not hard to show that an element belongs to the closure of A if and only if every
neighborhood of that point intersects A. Therefore, what we need to prove the following:
given any w ∈ C and any ε > 0, there exists z ∈ U so that f(z) ∈ D(w; ε).

So, let w ∈ C and ε > 0. According to the Casorati-Weierstrass Theorem, there is a
sequence z1, z2, z3, · · · ∈ C so that zn → z0 and f(zn) → w. Since z0 ∈ U and U is open,
there is a δ > 0 so that D(z0; δ) ⊂ U . Choose N1 ∈ Z+ so that |zn − z0| < δ for n ≥ N1 and
choose N2 ∈ Z+ so that |f(zn) − w| < ε. Let N = max{N1, N2}. Then zN ∈ D(z0; δ) ⊂ U
and f(zN) ∈ D(w; ε). That is, zN satisfies the required conditions. Since w ∈ C and ε > 0
were arbitrary, we conclude that the necessary condition holds for all w ∈ C and ε > 0.
Thus, the closure of f(U) is C.

3.R.2 The function 1/ cos z fails to be analytic precisely where cos z = 0. The latter occurs
if and only if z = nπ + π/2 for some n ∈ Z. Since the derivative of cos z is − sin z and
sin(nπ + π/2) = (−1)n 6= 0, we see that cos z has simple zeros at the points z = nπ + π/2,
n ∈ Z. Consequently, 1/ cos z has simple poles at these points.

3.R.6(a) The singularities of f(z) occur precisely when sin(πz) = 0. The function sin(πz)
is zero if and only if z ∈ Z and so the singularities of f(z) consist precisely of the integers.
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Since the derivative of sin(πz) is π cos(πz) and π cos(πn) = (−1)nπ 6= 0 we conclude that
the zeros of sin(πz) are all simple. The function πz(1 − z2) = πz(1 − z)(1 + z) has simple
zeros at z = 0,±1, as is evidenced by the given factorization. It follows that

f(z) =
πz(1− z2)

sin(πz)

has simple poles at z ∈ Z, z 6= 0,±1 and that the singularities at z = 0,±1 are removable.

3.R.18

(a) If |z| < 1 then

1

1 + z2
+

1

3− z
=

1

1 + z2
+

1

3

1

1− z/3
=

∞∑
n=0

(−1)nz2n +
1

3

∞∑
n=0

zn

3n
.

Since
∞∑

n=0

(−1)nz2n =
∞∑

n=0

(
(−1)n + 1

2

)
(−1)n/2zn

we can combine the series above to get

1

1 + z2
+

1

3− z
=

∞∑
n=0

((
(−1)n + 1

2

)
(−1)n/2 +

1

3n+1

)
zn,

which is valid for |z| < 1.

(b) If 1 < |z| < 3 then

1

1 + z2
=

1

z2

1

1 + 1/z2
=

1

z2

∞∑
n=0

(−1)n

z2n
=

∞∑
n=1

(−1)n+1

z2n

since |1/z2| < 1. As above, we still have

1

3− z
=

1

3

∞∑
n=0

zn

3n

and so
1

1 + z2
+

1

3− z
=

∞∑
n=0

zn

3n+1
+

∞∑
n=1

(−1)n+1

z2n
.

(c) If |z| > 3 then as above we have

1

1 + z2
=

∞∑
n=1

(−1)n+1

z2n
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and also
1

3− z
=
−1

z

1

1− 3/z
=
−1

z

∞∑
n=0

3n

zn
= −

∞∑
n=1

3n−1

zn
.

Hence
1

1 + z2
+

1

3− z
=

∞∑
n=1

(−1)n+1

z2n
−

∞∑
n=1

3n−1

zn

and these series may be combined as in part (a) to yield single series.

3.R.20 Let g(z) = f(1/z). Since 1/z is analytic for z 6= 0 and f is entire, g(z) is analytic
for z 6= 0. Consequently g has an isolated singularity at z0 = 0. Notice that lim z →
0g(z) = lim z → 0f(1/z) = lim w →∞f(w) = ∞. From this it follows that g cannot have a
removable singularity at 0 (otherwise the limit would be finite) and that g cannot have an
essential singularity at 0 (otherwise the limit could not exist). The only remaining option is
that g has a pole at 0. The Laurent expansion of g at 0 then takes the form

g(z) =
∞∑

n=0

anz
n +

k∑
n=1

bn

zn

for some n ∈ Z+. Since g is analytic on C \ {0}, the equality above is valid for all z 6= 0. In
particular, if z 6= 0 then 1/z 6= 0 and

f(z) = g(1/z) =
∞∑

n=0

an

zn
+

k∑
n=1

bnz
n

which gives the Laurent expansion for f at 0. Since f is analytic at zero is must be the case
that an = 0 for all n ≥ 1 (otherwise f would have a pole or essential singularity at 0). But
then we have

f(z) = a0 +
k∑

n=1

bnz
n.

That is, f is a polynomial.

4.1.1

(a) The function sin z has a simple zero at z0 = 0 since sin 0 = 0 but cos 0 = 1 6= 0.
However, ez − 1 also has a zero at z0 = 0, which means that (ez − 1)/ sin z has a
removable singularity at z0 = 0. Consequently, the residue there is 0.
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(b) The function ez−1 has a simple zero at z0 = 0 since ez−1 vanishes at that point but its
derivative, ez, does not. Therefore 1/(ez − 1) has a simple pole at z0 = 0 with residue

1

ez

∣∣∣∣
z=0

= 1

by Proposition 4.1.2.

(c) Since z2 − 2z = z(z − 2), we see that z2 − 2z has a simple zero at z0 = 0. Since z + 2
is nonzero at this point, we conclude that (z + 2)/(z2 − 2z) has a simple pole at z0 = 0
with residue

z + 2

2z − 2

∣∣∣∣
z=0

= −1,

again by Proposition 4.1.2.

(d) z4 has a zero of order 4 at 0 and ez + 1 is nonzero at 0 so that (ez + 1)/z4 must have a
pole of order 4 at 0. The residue can be computed using Proposition 4.1.6:

Res

(
ez + 1

z4
; 0

)
=

1

3!

d3

dz3
(1 + ez)

∣∣∣∣
z=0

=
1

6
.

(e) Since (z2 − 1)2 = (z − 1)2(z + 1)2, (z2 − 1)2 has a double zero at z0 = 1. Since ez is
nonzero at 1, we conclude that

ez

(z2 − 1)2

has a double pole at z0 = 1 with residue

d

dz
(z − 1)2 ez

(z2 − 1)2

∣∣∣∣
z=1

=
d

dz

ez

(z + 1)2

∣∣∣∣
z=1

=
(z − 1)ez

(z + 1)3

∣∣∣∣
z=1

= 0.

4.1.2

(a) Since ez2
is nonzero everywhere, the pole is simple and the residue is

lim
z→1

(z − 1)
ez2

z − 1
= e.

(b) The function in question is analytic at 0 and so the residue there is 0.

(c) Let f(z) = cos z−1. Since f(0) = 0, f ′(0) = 0 and f ′′(0) = 1, we find that f has a double
zero at 0. Since g(z) = z has a simple zero at 0, it follows that f(z)/g(z) = (cos z−1)/z
has a removable singularity at 0 (and that, in fact, when we remove the singularity
the function has a simple zero at 0). Therefore (cos z − 1)2/z2 also has a removable
singularity at 0 and so the residue at 0 is 0.
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(d) i = eiπ/2 is a simple zero of z4 − 1 (since it is not a zero of the derivative) and is not a
zero of z2, so it follows that z2/(z4 − 1) has simple zero at i with residue

z2

4z3

∣∣∣∣
z=i

=
1

4i
= − i

4
.

4.1.8

(a) The zeros of ez − 1 occur at z = 2nπi, n ∈ Z, and are all simple since the derivative,
ez, of ez − 1 does not vanish at these points. Therefore we can compute the residue of
1/(ez − 1) at z = 2nπi using Proposition 4.1.2:

Res

(
1

ez − 1
; 2nπi

)
=

1

ez

∣∣∣∣
z=2nπi

= 1.

(b) The chain rule tells us that the only point at which sin(1/z) fails to be analytic is z = 0.
Since sin z is entire it equals its Taylor series centered at the origin at every point. In
particular, this means that for z 6= 0 we have

sin
1

z
=

∞∑
n=0

(−1)n

(2n + 1)!

(
1

z

)2n+1

This expression gives the Laurent expansion of sin(1/z) on C\{0} and shows both that
the singularity at z0 = 0 is essential and that the residue at that point is 1.

4.2.2 Let f(z) be analytic on a connected open set A and let γ be any closed curve in A
homotopic to a point in A. Let z0 ∈ A with z0 6∈ γ. The function f(z)/(z − z0) is analytic
on A \ {z0} with residue f(z0) at z0. The Residue Theorem then immediately gives∫

γ

f(z)

z − z0

dz = 2πiI(γ; z0) Res

(
f(z)

(z − z0)
; z0

)
= 2πiI(γ; z0)f(z0)

which is precisely the statement of Cauchy’s Integral Formula.

4.2.3 The function z/(z2 +2z+5) has singularities where z2 +2z+5 = 0, i.e. at z = −1±2i.
Since neither of these points lie inside the unit circle, the function z/(z2 +2z +5) is analytic
inside and on the unit circle and so by Cauchy’s Theorem we have∫

|z|=1

z

z2 + 2z + 5
dz = 0.
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4.2.4 According to problem 4.1.8(a), the function 1/(ez − 1) has simple poles of residue 1
at the points z = 2nπi for n ∈ Z. If γ is the circle of radius 9 centered at 0 then γ contains
only the poles 0,±2πi. Hence∫

γ

dz

ez − 1
= 2πi(1 + 1 + 1) = 6πi.

4.2.5 The function tan z = sin z/ cos z has singularities where cos z = 0, i.e. at the points
z = π/2 + nπ for n ∈ Z. Since sin z is nonzero at these points we conclude that these are all
simple zeros of cos z and simple poles of sin z/ cos z. For n ∈ Z we have

Res

(
sin z

cos z
;
π

2
+ nπ

)
=

sin(π/2 + nπ)

− sin(π/2 + nπ)
= −1.

If γ is the circle of radius 8 centered at 0 then γ contains only the singularities π/2 + nπ for
n = −3,−2,−1, 0, 1, 2 and therefore∫

γ

tan z dz = 2πi(−1 +−1 +−1 +−1 +−1 +−1) = −12πi.

4.2.6 The singularities of (5z − 2)/z(z − 1) occur at z = 0 and z = 1 and since these are
both simple zeros of the denominator (but not zeros of the numerator) these are both simple
poles. The residues are

Res

(
5z − 2

z(z − 1)
; 0

)
=
−2

−1
= 2

and

Res

(
5z − 2

z(z − 1)
; 1

)
=

3

1
= 3.

Therefore, if γ is any circle which contains both z = 0 and z = 1 then∫
γ

5z − 2

z(z − 1)
dz = 2πi(2 + 3) = 10πi.
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