
Complex Analysis
Fall 2007 Homework 1: Solutions

1.1.2.

(a) (2 + 3i)(4 + i) = (8− 3) + (12 + 2)i = 5 + 14i

(b) (8 + 6i)2 = (64− 36) + (48 + 48)i = 28 + 96i

(c) (
1 +

3

1 + i

)2

=

(
1 +

3(1− i)

(1 + i)(1− i)

)2

=

(
1 +

3− 3i

2

)2

=

(
5

2
− 3

2
i

)2

=

(
25

4
− 9

4

)
+

(
−15

4
− 15

4

)
i

= 4− 15

2
i

1.1.6.

(a) If z = x + iy we have

z + 1

2z − 5
=

(z + 1)(2z̄ − 5)

(2z − 5)(2z̄ − 5)

=
2zz̄ − 5z + 2z̄ − 5

4zz̄ − 10(z + z̄) + 25

=
2|z|2 − 5z + 2z̄ − 5

4|z|2 − 10(z + z̄) + 25

=
2(x2 + y2)− 5x + 2x− 5 +−5yi− 2yi

4(x2 + y2)− 20x + 25

=
2(x2 + y2)− 3x− 5

4(x2 + y2)− 20x + 25
+

−7y

4(x2 + y2)− 20x + 25
i

so that

Re

(
z + 1

2z − 5

)
=

2(x2 + y2)− 3x− 5

4(x2 + y2)− 20x + 25
, Im

(
z + 1

2z − 5

)
=

−7y

4(x2 + y2)− 20x + 25
.
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(b) If z = x + iy then

z3 = (x + iy)3 = x3 + 3x2yi + 3xy2i2 + y3i3 = (x3 − 3xy2) + (3x2y − y3)i

so that
Rez3 = x3 − 3xy2 , Imz3 = 3x2y − y3.

1.1.18.

(a) (1− i)−1 = 1+i
(1−i)(1+i)

= 1+i
2

= 1
2

+ 1
2
i

(b) 1+i
1−i

= (1 + i)(1− i)−1 = (1 + i)
(

1
2

+ 1
2
i
)

=
(

1
2
− 1

2

)
+

(
1
2
− 1

2

)
i = i

1.2.2.

(a) The equation z6 + 8 = 0 is equivalent to z6 = −8. Since | − 8| = 8 and arg(−8) = π,
the solutions to the latter equation are

zk =
6
√

8

(
cos

(
π

6
+

πk

3

)
+ i sin

(
π

6
+

πk

3

))
for k = 0, 1, . . . , 5.

(b) The equation z3 − 4 = 0 is equivalent to z3 = 4 which, since |4| = 4 and arg(4) = 0,
has the solutions

zk =
3
√

4

(
cos

(
2πk

3

)
+ i sin

(
2πk

3

))
for k = 0, 1, 2.

1.2.4. Recalling that conjugation preserves the arithmetic of C, we have(
(8− 2i)10

(4 + 6i)5

)
=

(8 + 2i)10

(4− 6i)5
.

1.2.6. DeMoivre’s formula and the binomial theorem give

cos 6x + i sin 6x = (cos x + i sin x)6

= (cos6 x− 15 cos4 x sin2 x + 15 cos2 x sin4 x− sin6 x)

+i(6 cos5 x sin x− 20 cos3 x sin3 x + 6 cos x sin5 x).

Equating real and imaginary parts gives

cos 6x = cos6 x− 15 cos4 x sin2 x + 15 cos2 x sin4 x− sin6 x

sin 6x = 6 cos5 x sin x− 20 cos3 x sin3 x + 6 cos x sin5 x.
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1.2.8. Since | · | preserves multiplication and division we have∣∣∣∣(2− 3i)2

(8 + 6i)2

∣∣∣∣ =
|2− 3i|2

|8 + 6i|2
=

4 + 9

64 + 36
=

13

100

1.2.10. Let

p(z) =
n∑

j=0

ajz
j

be a polynomial with aj ∈ R for all j. To say that the roots of p(z) “occur in complex pairs”
means that if z0 ∈ C is a root, then so too is z0. To see that this is the case, let z0 ∈ C with
p(z0) = 0. Then, since conjugation preserves arithmetic and aj = aj for all j,

0 = 0 = p(z0) =
n∑

j=0

ajz
j
0 =

n∑
j=0

aj z0
j =

n∑
j=0

aj z0
j = p(z0)

1.2.14. Notice first that∣∣∣∣ z − w

1− zw̄

∣∣∣∣ =
|z − w|
|1− zw̄|

=
|w − z|
|1− z̄w|

=

∣∣∣∣ w − z

1− wz̄

∣∣∣∣ .

That is, the expression in question is symmetric in z and w. We may therefore assume, with-
out loss of generality, that |w| = 1. The second, and perhaps more important observation,
is that if |w| = 1 then w−1 = w̄, since 1 = |w|2 = ww̄. We therefore have∣∣∣∣ z − w

1− zw̄

∣∣∣∣ =

∣∣∣∣ z − w

1− zw−1

∣∣∣∣ =

∣∣∣∣ z − w

(w − z)w−1

∣∣∣∣ =

∣∣∣∣w(z − w)

w − z

∣∣∣∣ =
|w||z − w|
|w − z|

= 1

which is what we wanted to show.

1.2.18.

(a) Since |z|2 ∈ R, |z|2 = zz̄ and congruence mod 2π is an equivalence relation, if z 6= 0 we
have

0 ≡ arg |z|2 (mod 2π)

≡ arg zz̄ (mod 2π)

≡ arg z + arg z̄ (mod 2π)

which shows that arg z̄ ≡ − arg z (mod 2π).

(b) As above, we have

arg z ≡ arg(zw/w) (mod 2π)

≡ arg(z/w) + arg w (mod 2π)

which shows that arg(z/w) ≡ arg z − arg w (mod 2π).
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(c) Let z = x+ iy ∈ C. Then |z|2 = x2 + y2 so that |z| = 0 iff |z|2 = 0 iff x2 + y2 = 0. Since
x, y ∈ R, this can happen iff x = y = 0 iff z = 0.

1.2.24. Since cubing a complex number triples its argument and cubes its modulus, it is
clear that z3 maps the disk {z ∈ C | |z| < 2} onto the disk {w ∈ C | |w| < 8}. Multiplication
by i rotates this disk by π/4 radians back onto itself and adding 1 shifts its radius to the
point 1 on the real axis. Since the right-most edge of the shifted disk passes through the
point 9, we find that sup|z|<2 Re(iz3 + 1) = 9.

1.3.2.

(a) e3−i = e3(cos(−1) + i sin(−1)) = e3 cos 1− ie3 sin 1

(b)

cos(2 + 3i) =
ei(2+3i) + e−i(2+3i)

2

=
e−3+2i + e3−2i

2

=
e−3(cos 2 + i sin 2) + e3(cos(−2) + i sin(−2))

2

= cos 2
(e3 + e−3)

2
− i sin 2

e3 − e−3

2
= cos 2 cosh 3− i sin 2 sinh 3

1.3.4.

(a) If sin z = (3 + i)/4 then 4 sin z = 3 + i. The definition of sin z then gives

−2i(eiz − e−iz) = 3 + i

which, upon multiplication by eiz (which is nonzero), is equivalent to

−2i(eiz)2 + 2i = (3 + i)eiz

or
−2i(eiz)2 − (3 + i)eiz + 2i = 0.

The quadratic formula yields

eiz =
(3 + i±

√
(3 + i)2 − 16)

−4i
=

3 + i±
√
−8 + 6i

−4i
.

At this point we need to compute the square root. Writing −8 + 6i = r(cos θ + i sin θ)
(r > 0) we find that r = 10 and cos θ = −8/10. Using the standard half-angle formulas,
we get cos(θ/2) = 1/

√
10 and sin(θ/2) = 3/

√
10, so that one of the square roots of

−8 + 6i is
√

r(cos(θ/2) + i sin(θ/2)) =
√

10(1/
√

10 + i3/
√

10) = 1 + 3i.
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Therefore, our solutions satisfy

eiz =
3 + i±

√
−8 + 6i

−4i
=

4 + 4i

−4i
,
2− 2i

−4i
= −1 + i,

1

2
+

1

2
i.

Let log z denote the branch of the logarithm with imaginary part in the interval [−π, pi).
Applying this branch to the equation above we find that all of the solutions are given
by

iz = log(−1 + i) + 2nπi

iz = log

(
1

2
+

1

2
i

)
+ 2mπi

for m, n ∈ Z. Since log(−1+i) = log
√

2+3πi/4 and log((1+i)/2) = log(1/
√

2)+πi/4 =
− log

√
2 + πi/4 the two equations above can be rewritten as

z = 2nπ +
3π

4
− i log

√
2

z = 2mπ +
π

4
+ i log

√
2.

Letting m,n vary through all possible integer values yields the complete set of solutions
to the original equation.

(b) The procedure is exactly the same as that above. Plugging in the definition of sin z,
the equation sin z = 4 becomes the equation (eiz)2 − 8ieiz − 1 = 0, which the quadratic
formula transforms to

eiz = (4±
√

15)i.

Using the same branch of log z as above we get

iz = log((4±
√

15)i) + 2nπi = log(4±
√

15) + i
(π

2
+ 2nπ

)
where n ∈ Z is arbitrary. Dividing by i gives the final answer:

z =
π

2
+ 2nπ − i log

√
(4±

√
15)

for any n ∈ Z.

1.3.14. If w = ex+iy = exeiy then |w| = ex and arg w ≡ y (mod 2π). Hence, if y is fixed, ez

lies on a ray emanating from the origin, making an angle of y with the real axis. As x →∞,
|w| = ex →∞ indicating that ez moves out along this ray away from the origin indefinitely.
On the other hand, as x → −∞, |w| = ex → 0 so that ez moves along the ray closer and
closer to the origin.

If x is fixed, then |w| is a constant, indicating that ez remains on the circle of radius ex

centered at 0. Since arg w ≡ y (mod 2π), as y →∞ the point w = ez simply moves around
this circle repeatedly counterclockwise and as y → −∞ the circle is traced out infinitely
often in the clockwise direction.
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1.3.24. We start by noting that if z = x + iy then

cos z =
eiz + e−iz

2

=
e−y(cos x + i sin x) + ey(cos(−x) + i sin(−x))

2
= cos x cosh y − i sin x sinh y.

A horizontal line has the form z = x+ iy0 where y0 ∈ R is fixed and x ∈ R varies. Writing
cos z = u + iv we find that the real and imaginary parts of the image of this horizontal line
satisfy

u = cos x cosh y0

v = − sin x sinh y0.

For variable x, this is the standard clockwise parametrization of the ellipse

u2

cosh2 y0

+
v2

sinh2 y0

= 1.1

That is, horizontal lines are mapped onto ellipses.

A vertical line is given by z = x0 + iy where x0 ∈ R is fixed and y ∈ R is free to vary. In
this case we have, again writing cos z = u + iv,

u = cos x0 cosh y

v = − sin x0 sinh y

which as y ∈ R varies gives the standard parametrization of the hyperbola

u2

cos2 x0

− v2

sin2 x0

= 1.2

That is, vertical lines are mapped onto hyperbolas.

1Provided sinh y0 6= 0. It is left to the reader to describe the image in the case sinh y0 = 0.
2Provided that cos x0 and sin x0 are both nonzero. It is left to the reader to determine the image when cos x0 = 0 or

sin x0 = 0.
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