A Simple Mapping Exercise

Exercise 1. Given a nonnegative $\theta_{0} \in \mathbb{R}$ let $W_{\theta_{0}}$ denote the wedge-shaped region defined by

$$
W_{\theta_{0}}=\left\{r e^{i \theta} \in \mathbb{C} \mid r \geq 0, \theta \in\left[0, \theta_{0}\right]\right\} .
$$

a. Sketch the region $W_{\theta_{0}}$ for a few values of $\theta_{0} \in[0,2 \pi]$. Which value of θ yields the first quadrant? The upper half-plane? The entire complex plane?
b. Let $n \in \mathbb{Z}, n \geq 2$ and $\theta_{0} \in[0,2 \pi / n)$. Prove carefully that the function $f(z)=z^{n}$ maps the region $W_{\theta_{0}}$ one-to-one and onto the region $W_{n \theta_{0}}$.
c. In part (b), if we allow $\theta_{0}=2 \pi / n$, then $f(z)$ is no longer both one-to-one and onto. Is it either one of these? Why?

