1.3.6.

(a) We have $\log |-i|=\log 1=0$ and $\arg (-i) \in\{-\pi / 2+2 n \pi \mid n \in \mathbb{Z}\}$. Hence, the values of $\log (-i)$ are

$$
i\left(\frac{-\pi}{2}+2 n \pi\right)
$$

for $n \in \mathbb{Z}$.
(b) We have $\log |1+i|=\log \sqrt{2}=(1 / 2) \log 2$ and $\arg (1+i) \in\{\pi / 4+2 n \pi \mid n \in \mathbb{Z}\}$. Hence, the values of $\log (1+i)$ are

$$
\frac{1}{2} \log 2+i\left(\frac{\pi}{4}+2 n \pi\right)
$$

1.3.8.
(a) Since i is not a rational number, we know that $(-1)^{i}$ has infinitely many values. To compute them we first compute the values of $\log (-1)$. Since $\log |-1|=\log 1=0$ and $\arg (-1) \in\{\pi+2 n \pi \mid n \in \mathbb{Z}\}$ the values of $\log (-1)$ are $i(\pi+2 n \pi)$ for $n \in \mathbb{Z}$. Hence, the values of $(-1)^{i}$ are

$$
e^{i \log (-1)}=e^{i^{2}(\pi+2 n \pi)}=e^{-(\pi+2 n \pi)}
$$

for $n \in \mathbb{Z}$.
(b) Again, i is not rational so we expect infinitely many values for 2^{i}. As above, we have $\log |2|=\log 2$ and $\arg 2 \in\{2 n \pi \mid n \in \mathbb{Z}\}$ so that $\log 2=\log 2+2 n \pi i$ and

$$
2^{i}=e^{i \log 2}=e^{-2 n \pi+i \log 2}
$$

for $n \in \mathbb{Z}$.
1.3.12. We begin by observing that for any $\alpha \in \mathbb{C}$ we have (by definition)

$$
\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=-i \frac{e^{i \alpha}-e^{-i \alpha}}{e^{i \alpha}+e^{-i \alpha}}
$$

If we multiply the numerator and denominator by $e^{i \alpha}$ this becomes

$$
\tan \alpha=-i \frac{\left(e^{i \alpha}\right)^{2}-1}{\left(e^{i \alpha}\right)^{2}+1}
$$

Given $z \in \mathbb{C} \backslash\{i,-i\}^{1}$, let

$$
\left(\frac{1+i z}{1-i z}\right)^{1 / 2}
$$

[^0]denote either square root of $(1+i z) /(1-i z)$ and let
$$
\log \left(\frac{1+i z}{1-i z}\right)^{1 / 2}
$$
denote any fixed value of the logarithm of $((1+i z) /(1-i z))^{1 / 2}$. Set
$$
\alpha=\frac{1}{i} \log \left(\frac{1+i z}{1-i z}\right)^{1 / 2} .
$$

Then, since $e^{\log w}=w$ for any nonzero w and any branch of the logarithm we have

$$
e^{i \alpha}=\exp \left(\log \left(\frac{1+i z}{1-i z}\right)^{1 / 2}\right)=\left(\frac{1+i z}{1-i z}\right)^{1 / 2}
$$

But $\left(w^{1 / 2}\right)^{2}=w$ for any w and any choice of the square root, so the above implies that

$$
\left(e^{i \alpha}\right)^{2}=\left(\left(\frac{1+i z}{1-i z}\right)^{1 / 2}\right)^{2}=\frac{1+i z}{1-i z}
$$

Plugging this into our expression for $\tan \alpha$ above yields

$$
\tan \alpha=-i \frac{\left(\frac{1+i z}{1-i z}\right)-1}{\left(\frac{1+i z}{1-i z}\right)+1}=-i \frac{(1+i z)-(1-i z)}{(1+i z)+(1-i z)}=-i \frac{2 i z}{2}=z
$$

which is exactly what we needed to show. Since our choice of square root and logarithm were arbitrary, the identity holds for all branches.
1.3.18. Let $b \in \mathbb{R}$. For $a \in \mathbb{C} \backslash\{0\}$ let $\log a=\log |a|+i \arg a$ for some branch of $\arg a$. Then

$$
\left|a^{b}\right|=\left|e^{b \log a}\right|=\left|e^{b \log |a|} e^{i b \arg a}\right|=\left|e^{b \log |a|}\right| \cdot\left|e^{i b \arg a}\right|
$$

Since $b \in \mathbb{R}, b \log |a| \in \mathbb{R}$ and $b \arg a \in \mathbb{R}$. Therefore,

$$
e^{b \log |a|}=\left(e^{\log |a|}\right) b=|a|^{b}
$$

and

$$
\left|e^{i b \arg a}\right|=1
$$

Combining this with what we had above we get

$$
\left|a^{b}\right|=|a|^{b}
$$

which is what we sought to show. Note that since our choice of branch of the logarithm was arbitrary, this identity holds for any branch of a^{b}.
1.3.26a. Any line parallel to the real axis can be described parametrically by $z=t+i y_{0}$, where $y_{0} \in \mathbb{R}$ is fixed and $t \in \mathbb{R}$ is arbitrary. Writing $z^{2}=u+i v$ we find that $u=t^{2}-y_{0}^{2}$ and $v=2 y_{0} t$. Solving the latter for t and substituting this into the former yields

$$
u=\left(\frac{v}{2 y_{0}}\right)^{2}-y_{0}^{2}=\left(\frac{v}{2 y_{0}}-y_{0}\right)\left(\frac{v}{2 y_{0}}+y_{0}\right)
$$

Figure 1: The images of the horizontal lines $y=0,1 / 2,1,3 / 2$ and 2 (from right to left) under the mapping $z \mapsto z^{2}$.
which shows that the points (u, v) lie on a right-ward opening parabola (unless $y_{0}=0$; in that case the points lie on the non-negative real axis). The fact that we get every point on this parabola as z moves along the original line follows from the fact that as t varies through all real numbers, so too does $v=2 y_{0} t$.

Additional problem.

(a) The first quadrant is the same as $W_{\pi / 2}$. The upper half plane is W_{π}. The entire plane is $W_{2 \pi}$.
(b) Let $z \in W_{\theta_{0}}$. Then we can write $z=r e^{i \theta}$ for some $r \geq 0$ and $\theta \in\left[0, \theta_{0}\right]$ and $z^{n}=r^{n} e^{i n \theta}$. Since $r^{n} \geq 0$ and $n \theta \in\left[0, n \theta_{0}\right]$, it follows that $z^{n} \in W_{n \theta_{0}}$. That is, if $f(z)=z^{n}$ then $f\left(W_{\theta_{0}}\right) \subset W_{n \theta_{0}}$.
To prove that f maps $W_{\theta_{0}}$ onto $W_{n \theta_{0}}$ we must show that, in fact, $f\left(W_{\theta_{0}}\right)=W_{n \theta_{0}}$. To that end, let $w \in W_{n \theta_{0}}$. Then we can write $w=r e^{i \theta}$ with $r \geq 0$ and $\theta \in\left[0, n \theta_{0}\right]$. Since $r^{1 / n} \geq 0$ and $\theta / n \in\left[0, \theta_{0}\right]$, we see that $z=r^{1 / n} e^{i \theta / n} \in W_{\theta_{0}}$. Furthermore, $f(z)=\left(r^{1 / n} e^{i \theta / n}\right)^{n}=r e^{i \theta}=w$. Since $w \in W_{n \theta_{0}}$ was arbitrary this proves that f maps $W_{\theta_{0}}$ onto $W_{n \theta_{0}}$.
To prove that f is one-to-one on $W_{\theta_{0}}$ we show that if $z_{1}, z_{2} \in W_{\theta_{0}}$ and $f\left(z_{1}\right)=f\left(z_{2}\right)$ then $z_{1}=z_{2}$. So, let $z_{1}, z_{2} \in W_{\theta_{0}}$ and suppose $f\left(z_{1}\right)=f\left(z_{2}\right)$. If $z_{1}=0$ then $0=$ $f\left(z_{1}\right)=f\left(z_{2}\right)=z_{2}^{n}$ which implies that $z_{2}=0=z_{1}$. We have the same conclusion if $z_{2}=0$. Therefore we can assume that $z_{1}, z_{2} \neq 0$. In this case, we can write $z_{k}=r_{k} e^{i \theta_{k}}$ with $r_{k}>0$ and $\theta_{k} \in\left[0, \theta_{0}\right]$ for $k=1,2$. Then $f\left(z_{1}\right)=f\left(z_{2}\right)$ implies $r_{1}^{n} e^{i n \theta_{1}}=r_{2}^{n} e^{i n \theta_{2}}$. Because $r_{1}^{n}, r_{2}^{n}>0$, uniqueness of polar representations implies that $r_{1}^{n}=r_{2}^{n}$ and $n \theta_{1} \equiv$ $n \theta_{2}(\bmod 2 \pi)$. The first equation immediately gives $r_{1}=r_{2}$. As to the second, it implies that $n \theta_{1}-n \theta_{2}$ is a multiple of 2π. But $n \theta_{1}, n \theta_{n} \in\left[0, n \theta_{0}\right] \subset[0,2 \pi)$ so that
$\left|n \theta_{1}-n \theta_{2}\right|<2 \pi$. It follows that $n \theta_{2}-n \theta_{1}=0$ and hence that $\theta_{1}=\theta_{2}$. Therefore, $z_{1}=z_{2}$. Since $z_{1}, z_{2} \in W_{\theta_{0}}$ were arbitrary, we have proven that f is one-to-one.
(c) If $\theta_{0}=2 \pi / n$ then f is still onto. In fact, the proof of "onto" in part (b) still applies. However, f is no longer one-to-one. For example, if $z_{1}=1$ and $z_{2}=e^{2 \pi / n}$ then $z_{1}, z_{2} \in W_{2 \pi / n}$ and $f\left(z_{1}\right)=f\left(z_{2}\right)=1$, but $z_{1} \neq z_{2}$.

[^0]: ${ }^{1}$ While it is only implicit in this problem, one can easily show that the equation $\tan w=i$ has no solution for $w \in \mathbb{C}$. This exercise, therefore, proves that the function $f(z)=\tan z$ maps \mathbb{C} onto the set $\mathbb{C} \backslash\{i,-i\}$

