
Complex Analysis
Fall 2007 Homework 2: Solutions

1.3.6.

(a) We have log | − i| = log 1 = 0 and arg(−i) ∈ {−π/2 + 2nπ |n ∈ Z}. Hence, the values
of log(−i) are

i

(−π

2
+ 2nπ

)

for n ∈ Z.

(b) We have log |1 + i| = log
√

2 = (1/2) log 2 and arg(1 + i) ∈ {π/4 + 2nπ |n ∈ Z}. Hence,
the values of log(1 + i) are

1

2
log 2 + i

(π

4
+ 2nπ

)
.

1.3.8.

(a) Since i is not a rational number, we know that (−1)i has infinitely many values. To
compute them we first compute the values of log(−1). Since log | − 1| = log 1 = 0 and
arg(−1) ∈ {π +2nπ |n ∈ Z} the values of log(−1) are i(π +2nπ) for n ∈ Z. Hence, the
values of (−1)i are

ei log(−1) = ei2(π+2nπ) = e−(π+2nπ)

for n ∈ Z.

(b) Again, i is not rational so we expect infinitely many values for 2i. As above, we have
log |2| = log 2 and arg 2 ∈ {2nπ |n ∈ Z} so that log 2 = log 2 + 2nπi and

2i = ei log 2 = e−2nπ+i log 2

for n ∈ Z.

1.3.12. We begin by observing that for any α ∈ C we have (by definition)

tan α =
sin α

cos α
= −i

eiα − e−iα

eiα + e−iα
.

If we multiply the numerator and denominator by eiα this becomes

tan α = −i
(eiα)2 − 1

(eiα)2 + 1
.

Given z ∈ C \ {i,−i}1, let (
1 + iz

1− iz

)1/2

1While it is only implicit in this problem, one can easily show that the equation tanw = i has no solution for w ∈ C. This
exercise, therefore, proves that the function f(z) = tan z maps C onto the set C \ {i,−i}
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denote either square root of (1 + iz)/(1− iz) and let

log

(
1 + iz

1− iz

)1/2

denote any fixed value of the logarithm of ((1 + iz)/(1− iz))1/2. Set

α =
1

i
log

(
1 + iz

1− iz

)1/2

.

Then, since elog w = w for any nonzero w and any branch of the logarithm we have

eiα = exp

(
log

(
1 + iz

1− iz

)1/2
)

=

(
1 + iz

1− iz

)1/2

.

But (w1/2)2 = w for any w and any choice of the square root, so the above implies that

(eiα)2 =

((
1 + iz

1− iz

)1/2
)2

=
1 + iz

1− iz
.

Plugging this into our expression for tan α above yields

tan α = −i

(
1+iz
1−iz

)− 1(
1+iz
1−iz

)
+ 1

= −i
(1 + iz)− (1− iz)

(1 + iz) + (1− iz)
= −i

2iz

2
= z

which is exactly what we needed to show. Since our choice of square root and logarithm
were arbitrary, the identity holds for all branches.

1.3.18. Let b ∈ R. For a ∈ C\{0} let log a = log |a|+ i arg a for some branch of arg a. Then

|ab| = |eb log a| = |eb log |a|eib arg a| = |eb log |a|| · |eib arg a|.
Since b ∈ R, b log |a| ∈ R and b arg a ∈ R. Therefore,

eb log |a| = (elog |a|)b = |a|b

and
|eib arg a| = 1.

Combining this with what we had above we get

|ab| = |a|b

which is what we sought to show. Note that since our choice of branch of the logarithm was
arbitrary, this identity holds for any branch of ab.

1.3.26a. Any line parallel to the real axis can be described parametrically by z = t + iy0,
where y0 ∈ R is fixed and t ∈ R is arbitrary. Writing z2 = u + iv we find that u = t2 − y2

0

and v = 2y0t. Solving the latter for t and substituting this into the former yields

u =

(
v

2y0

)2

− y2
0 =

(
v

2y0

− y0

)(
v

2y0

+ y0

)
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0.0

−5.0

Figure 1: The images of the horizontal lines y = 0, 1/2, 1, 3/2 and 2 (from right to left) under the mapping
z 7→ z2.

which shows that the points (u, v) lie on a right-ward opening parabola (unless y0 = 0; in
that case the points lie on the non-negative real axis). The fact that we get every point on
this parabola as z moves along the original line follows from the fact that as t varies through
all real numbers, so too does v = 2y0t.

Additional problem.

(a) The first quadrant is the same as Wπ/2. The upper half plane is Wπ. The entire plane
is W2π.

(b) Let z ∈ Wθ0 . Then we can write z = reiθ for some r ≥ 0 and θ ∈ [0, θ0] and zn = rneinθ.
Since rn ≥ 0 and nθ ∈ [0, nθ0], it follows that zn ∈ Wnθ0 . That is, if f(z) = zn then
f(Wθ0) ⊂ Wnθ0 .

To prove that f maps Wθ0 onto Wnθ0 we must show that, in fact, f(Wθ0) = Wnθ0 . To
that end, let w ∈ Wnθ0 . Then we can write w = reiθ with r ≥ 0 and θ ∈ [0, nθ0].
Since r1/n ≥ 0 and θ/n ∈ [0, θ0], we see that z = r1/neiθ/n ∈ Wθ0 . Furthermore,
f(z) = (r1/neiθ/n)n = reiθ = w. Since w ∈ Wnθ0 was arbitrary this proves that f maps
Wθ0 onto Wnθ0 .

To prove that f is one-to-one on Wθ0 we show that if z1, z2 ∈ Wθ0 and f(z1) = f(z2)
then z1 = z2. So, let z1, z2 ∈ Wθ0 and suppose f(z1) = f(z2). If z1 = 0 then 0 =
f(z1) = f(z2) = zn

2 which implies that z2 = 0 = z1. We have the same conclusion if
z2 = 0. Therefore we can assume that z1, z2 6= 0. In this case, we can write zk = rke

iθk

with rk > 0 and θk ∈ [0, θ0] for k = 1, 2. Then f(z1) = f(z2) implies rn
1 einθ1 = rn

2 einθ2 .
Because rn

1 , rn
2 > 0, uniqueness of polar representations implies that rn

1 = rn
2 and nθ1 ≡

nθ2 (mod 2π). The first equation immediately gives r1 = r2. As to the second, it
implies that nθ1 − nθ2 is a multiple of 2π. But nθ1, nθn ∈ [0, nθ0] ⊂ [0, 2π) so that
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|nθ1 − nθ2| < 2π. It follows that nθ2 − nθ1 = 0 and hence that θ1 = θ2. Therefore,
z1 = z2. Since z1, z2 ∈ Wθ0 were arbitrary, we have proven that f is one-to-one.

(c) If θ0 = 2π/n then f is still onto. In fact, the proof of “onto” in part (b) still applies.
However, f is no longer one-to-one. For example, if z1 = 1 and z2 = e2π/n then
z1, z2 ∈ W2π/n and f(z1) = f(z2) = 1, but z1 6= z2.
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