1.3.10. Claim: Using the branch of the square root function given in the problem, $\sqrt{z^{2}}=z$ iff $z=0$ or $z=r e^{i \theta}$ with $r>0$ and $0 \leq \theta<\pi$.

Proof: (\Leftarrow) Suppose $z=r e^{i \theta}$ with $r \geq 0$ and $0 \leq \theta<\pi$. Then $z^{2}=r^{2} e^{i 2 \theta}$ and $0 \leq 2 \theta<2 \pi$ so that

$$
\sqrt{z^{2}}=\left(r^{2}\right)^{1 / 2} e^{i 2 \theta / 2}=r e^{i \theta}=z
$$

(\Rightarrow) Suppose z is not of the desired form. We will show that $\sqrt{z^{2}} \neq z$. In this case $z=r e^{i \theta}$ with $r>0$ and $\pi \leq \theta<2 \pi$. Then $z^{2}=r^{2} e^{i 2 \theta}=r^{2} e^{i(2 \theta-2 \pi)}$ and since $0 \leq 2 \theta-2 \pi<2 \pi$ we have

$$
\sqrt{z^{2}}=\left(r^{2}\right)^{1 / 2} e^{i(2 \theta-2 \pi) / 2}=r e^{i \theta} e^{i \pi}=-z
$$

Since $z \neq 0$, this is not the same as z.
1.3.34. If $z=x+i y$, it is shown on page 38 of our text that

$$
\sin z=\sin x \cosh y+i \cos x \sinh y .
$$

We will use this below.
Let $A=\{z| | \operatorname{Re} z \mid<\pi / 2\}$ and $B=\mathbb{C} \backslash\{z \mid \operatorname{Im} z=0$ and $|z| \geq 1\}$. We are asked to show that $z \mapsto \sin z$ carries A onto B. Since $\sin (\bar{z})=\overline{\sin z}$ and $\sin (-z)=-\sin (z)$, it is sufficient to show that $z \mapsto \sin z$ maps $A^{\prime}=\{z \mid 0 \leq \operatorname{Re} z<\pi / 2$ and $\operatorname{Im} z \geq 0\}$ onto $B^{\prime}=\{z \mid \operatorname{Re} z \geq 0$ and $\operatorname{Im} z \geq 0\} \backslash\{z \mid \operatorname{Im} z=0$ and $\operatorname{Re} z \geq 1\}$. We will argue geometrically.

Fix $x_{0} \in[0, \pi / 2)$ and consider the vertical ray defined by $z=x_{0}+i y, y \geq 0$. Writing $\sin z=u+i v$ we find that the real and imaginary parts of the image of this ray under $\sin z$ satisfy

$$
\begin{aligned}
& u=\sin x_{0} \cosh y \\
& v=\cos x_{0} \sinh y .
\end{aligned}
$$

If $x_{0}=0$ then we have, in fact, $u=0$ and $v=\sinh y$. As $y \geq 0$, the points $u+i v$ then trace out the non-negative imaginary axis. If $x_{0} \neq 0$ then we know that $\sin x_{0} \neq 0$ and so as $y \geq 0$ varies, we find that the equations expressing u and v above give the standard parametrization of the portion of hyperbola

$$
\frac{u^{2}}{\sin ^{2} x_{0}}-\frac{v^{2}}{\cos ^{2} x_{0}}=1
$$

that lies in the first quadrant.
As x_{0} increases from 0 to $\pi / 2$, the rays $z=x_{0}+i y$ cover all of A^{\prime}. Moreover, the images of our rays start at the positive imaginary axis and proceed to "bend toward" the part of
the real axis for which $u>1$ (sketch a few image curves for x_{0} approaching $\pi / 2$ so see what I mean). It is then intuitively clear that as x_{0} moves across the interval $[0, \pi / 2)$ the image curves fill the set B^{\prime}, which is what we wanted to show.

A more careful proof could be given by showing that given any $w \in B^{\prime}$ there is an x_{0} so that the image of the ray $z=x_{0}+i y$ passes through w. This is tedious (but not difficult) and the details will not be given here.

1.4.2.

(a) For any $z_{1}, z_{2} \in \mathbb{C}$ we have, by properties of $|\cdot|$,

$$
\left|\operatorname{Re} z_{1}-\operatorname{Re} z_{2}\right|=\left|\operatorname{Re}\left(z_{1}-z_{2}\right)\right| \leq\left|z_{1}-z_{2}\right|
$$

and

$$
\left|\operatorname{Im} z_{1}-\operatorname{Im} z_{2}\right|=\left|\operatorname{Im}\left(z_{1}-z_{2}\right)\right| \leq\left|z_{1}-z_{2}\right|
$$

and finally (by the triangle inequality)

$$
\begin{aligned}
\left|z_{1}-z_{2}\right| & =\left|\operatorname{Re}\left(z_{1}-z_{2}\right)+i \operatorname{Im}\left(z_{1}-z_{2}\right)\right| \\
& \leq\left|\operatorname{Re}\left(z_{1}-z_{2}\right)\right|+\left|i \operatorname{Im}\left(z_{1}-z_{2}\right)\right| \\
& =\left|\operatorname{Re} z_{1}-\operatorname{Re} z_{2}\right|+\left|\operatorname{Im} z_{1}-\operatorname{Im} z_{2}\right| .
\end{aligned}
$$

(b) Theorem: Let $f(z)=u(x, y)+i v(x, y)$ and $z_{0}=x_{0}+i y_{0}$. The limit

$$
\lim _{z \rightarrow z_{0}} f(z)
$$

exists if and only if both of the limits

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y), \quad \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)
$$

exist. In either case

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)+i \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y) .
$$

Proof: (\Rightarrow) Suppose $\lim _{z \rightarrow z_{0}} f(z)=L \in \mathbb{C}$. Let $\epsilon>0$. Choose $\delta>0$ so that $0<\mid z-$ $z_{0} \mid<\delta$ implies $|f(z)-L|<\epsilon$. Let $d(P, Q)$ denote the usual distance between two points $P, Q \in \mathbb{R}^{2}$. Then $d\left((x, y),\left(x_{0}, y_{0}\right)\right)=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}=\left|\left(x-x_{0}\right)+i\left(y-y_{0}\right)\right|=$ $\left|(x+i y)-z_{0}\right|$. Therefore, $0<d\left((x, y),\left(x_{0}, y_{0}\right)\right)<\delta$ implies $0<\left|(x+i y)-z_{0}\right|<\delta$ which in turn implies that

$$
|u(x, y)-\operatorname{Re} L|=|\operatorname{Re} f(x+i y)-\operatorname{Re} L| \leq|f(x+i y)-L|<\epsilon
$$

where we have used part (a) to obtain the first inequality. Since $\epsilon>0$ was arbitrary we conclude that

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=\operatorname{Re} L
$$

proving that the limit exists. Replacing Re with Im and $u(x, y)$ with $v(x, y)$ in the above argument, we find that we also have

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=\operatorname{Im} L .
$$

This shows that the limits in question exist and also that

$$
\lim _{z \rightarrow z_{0}} f(z)=L=\operatorname{Re} L+i \operatorname{Im} L=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)+i \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y) .
$$

(\Leftarrow) Now suppose that

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=a, \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=b .
$$

Let $\epsilon>0$. As above, we let $d(P, Q)$ denote the distance between two points $P, Q \in \mathbb{R}^{2}$. We can choose a $\delta_{1}>0$ so that $0<d\left((x, y),\left(x_{0}, y_{0}\right)\right)<\delta_{1}$ implies $|u(x, y)-a|<$ $\epsilon / 2$. Likewise, we can choose a $\delta_{2}>0$ so that $0<d\left((x, y),\left(x_{0}, y_{0}\right)\right)<\delta_{2}$ implies $|v(x, y)-b|<\epsilon / 2$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$. Then if $0<\left|z-z_{0}\right|<\delta$ and $z=x+i y$ we have $0<d\left((x, y),\left(x_{0}, y_{0}\right)\right)<\delta$ and so

$$
\begin{aligned}
|f(z)-(a+b i)| & \leq|\operatorname{Re} f(z)-\operatorname{Re}(a+b i)|+|\operatorname{Im} f(z)-\operatorname{Im}(a+b i)| \\
& =|u(x, y)-a|+|v(x, y)-b| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Since $\epsilon>0$ was arbitrary we conclude that

$$
\lim _{z \rightarrow z_{0}} f(z)=a+b i=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)+i \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)
$$

which is what we needed to show.
1.4.4. We must prove that $\mathbb{C} \backslash\left\{z_{0}\right\}$ is open. Let $z_{1} \in \mathbb{C} \backslash\left\{z_{0}\right\}$. Then $z_{1} \neq z_{0}$ and so $r=\left|z_{1}-z_{0}\right| / 2>0$. Let $z \in D\left(z_{1}, r\right)$. Then by the reverse triangle inequality

$$
\left|z-z_{0}\right|=\left|z_{1}-z_{0}+z-z_{1}\right| \geq\left|z_{1}-z_{0}\right|-\left|z-z_{1}\right|=2 r-\left|z-z_{1}\right|>2 r-r=r>0
$$

so that $z \neq z_{0}$ and hence $z \in \mathbb{C} \backslash\left\{z_{0}\right\}$. Since $z \in D\left(z_{1}, r\right)$ was arbitrary this proves that $D\left(z_{1}, r\right) \subset \mathbb{C} \backslash\left\{z_{0}\right\}$, and since $z_{1} \in \mathbb{C} \backslash\left\{z_{0}\right\}$ was arbitrary this proves that $\mathbb{C} \backslash\left\{z_{0}\right\}$ is open. Hence $\left\{z_{0}\right\}$ is closed.
1.4.8. Let $z_{0} \in \mathbb{C}$. Let $\epsilon>0$ and set $\delta=\epsilon>0$. Then if $\left|z-z_{0}\right|<\delta$ the reverse triangle inequality implies

$$
\| z\left|-\left|z_{0}\right|\right| \leq\left|z-z_{0}\right|<\delta=\epsilon
$$

Since $\epsilon>0$ was arbitrary this proves that $|z|$ is continuous at the point z_{0}. Since $z_{0} \in \mathbb{C}$ was arbitrary we conclude that $|z|$ is continuous on \mathbb{C}.
1.4.10. Let $\epsilon>0$. Since $\lim _{w \rightarrow a} h(w)=c$ there is a $\delta_{1}>0$ so that $0<|w-a|<\delta_{1}$ implies $|h(w)-c|<\epsilon$. Since $\lim _{z \rightarrow z_{0}} f(z)=a$ and $\delta_{1}>0$ there is a $\delta>0$ so that $0<\left|z-z_{0}\right|<\delta$
implies that $|f(z)-a|<\delta_{1}$. Therefore $0<\left|z-z_{0}\right|<\delta$ implies that $|f(z)-a|<\delta_{1}$ which implies that (taking $w=f(z))|h(f(z))-c|<\epsilon$. Since $\epsilon>0$ was arbitrary this proves that

$$
\lim _{z \rightarrow z_{0}} h(f(z))=c
$$

which is what we sought to prove.

1.4.14.

(a) The set $\{z \mid \operatorname{Im} z>2\}$ is open but not closed.
(b) The set $\{z|1 \leq|z| \leq 2\}$ is closed but not open.
(c) The set $\{z \mid-1<\operatorname{Re} z \leq 2\}$ is neither open nor closed.

1.4.16(i).

(a) The set $\{z \mid 1<\operatorname{Re} z \leq 2\}$ is path connected and hence connected.
(b) The set $\{z|2 \leq|z| \leq 3\}$ is path connected and hence connected.
(c) The set $\{z||z| \leq 5$ and $| \operatorname{Im} z \mid \geq 1\}$ is not connected.
1.4.20. Let $A_{1}, \ldots, A_{n} \subset \mathbb{C}$ be open sets. Let $z \in \bigcap_{i=1}^{n} A_{i}$. Then for each i we know that $z \in A_{i}$ and therefore we may choose $r_{i}>0$ so that $D\left(z, r_{i}\right) \subset A_{i}$. Let $r=\min _{1 \leq i \leq n} r_{i}$. Then $r>0$ and for any i we have $r \leq r_{i}$ so that $D(z, r) \subset D\left(z, r_{i}\right) \subset A_{i}$. Hence $D(z, r) \subset \bigcap_{i=1}^{n} A_{i}$. Since z was an arbitrary element of the intersection we conclude that $\bigcap_{i=1}^{n} A_{i}$ is open.
1.4.22. Let $z_{0} \in A$. Since f is continuous on A we have $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$. Since h is continuous on $f(A)$ it is, in particular, continuous at $f\left(z_{0}\right)$. Therefore, if we take $a=f\left(z_{0}\right)$ in part (i) of the proposition we have

$$
\lim _{z \rightarrow z_{0}} h(f(z))=h\left(f\left(z_{0}\right)\right)
$$

which proves that $h(f(z))$ is continuous at z_{0}. Since $z_{0} \in A$ was arbitrary this proves that $h(f(z))$ is continuous on A.

