
Complex Analysis
Fall 2007 Homework 3: Solutions

1.3.10. Claim: Using the branch of the square root function given in the problem,
√

z2 = z
iff z = 0 or z = reiθ with r > 0 and 0 ≤ θ < π.

Proof: (⇐) Suppose z = reiθ with r ≥ 0 and 0 ≤ θ < π. Then z2 = r2ei2θ and 0 ≤ 2θ < 2π
so that √

z2 = (r2)1/2ei2θ/2 = reiθ = z.

(⇒) Suppose z is not of the desired form. We will show that
√

z2 6= z. In this case z = reiθ

with r > 0 and π ≤ θ < 2π. Then z2 = r2ei2θ = r2ei(2θ−2π) and since 0 ≤ 2θ − 2π < 2π we
have √

z2 = (r2)1/2ei(2θ−2π)/2 = reiθeiπ = −z.

Since z 6= 0, this is not the same as z.

1.3.34. If z = x + iy, it is shown on page 38 of our text that

sin z = sin x cosh y + i cos x sinh y.

We will use this below.

Let A = {z | |Re z| < π/2} and B = C \ {z | Im z = 0 and |z| ≥ 1}. We are asked
to show that z 7→ sin z carries A onto B. Since sin(z) = sin z and sin(−z) = − sin(z),
it is sufficient to show that z 7→ sin z maps A′ = {z | 0 ≤ Re z < π/2 and Im z ≥ 0}
onto B′ = {z | Re z ≥ 0 and Im z ≥ 0} \ {z | Im z = 0 and Re z ≥ 1}. We will argue
geometrically.

Fix x0 ∈ [0, π/2) and consider the vertical ray defined by z = x0 + iy, y ≥ 0. Writing
sin z = u + iv we find that the real and imaginary parts of the image of this ray under sin z
satisfy

u = sin x0 cosh y

v = cos x0 sinh y.

If x0 = 0 then we have, in fact, u = 0 and v = sinh y. As y ≥ 0, the points u + iv then
trace out the non-negative imaginary axis. If x0 6= 0 then we know that sin x0 6= 0 and
so as y ≥ 0 varies, we find that the equations expressing u and v above give the standard
parametrization of the portion of hyperbola

u2

sin2 x0

− v2

cos2 x0

= 1.

that lies in the first quadrant.

As x0 increases from 0 to π/2, the rays z = x0 + iy cover all of A′. Moreover, the images
of our rays start at the positive imaginary axis and proceed to “bend toward” the part of
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the real axis for which u > 1 (sketch a few image curves for x0 approaching π/2 so see what
I mean). It is then intuitively clear that as x0 moves across the interval [0, π/2) the image
curves fill the set B′, which is what we wanted to show.

A more careful proof could be given by showing that given any w ∈ B′ there is an x0 so
that the image of the ray z = x0 + iy passes through w. This is tedious (but not difficult)
and the details will not be given here.

1.4.2.

(a) For any z1, z2 ∈ C we have, by properties of | · |,

|Re z1 − Re z2| = |Re(z1 − z2)| ≤ |z1 − z2|

and
| Im z1 − Im z2| = | Im(z1 − z2)| ≤ |z1 − z2|

and finally (by the triangle inequality)

|z1 − z2| = |Re(z1 − z2) + i Im(z1 − z2)|
≤ |Re(z1 − z2)|+ |i Im(z1 − z2)|
= |Re z1 − Re z2|+ | Im z1 − Im z2|.

(b) Theorem: Let f(z) = u(x, y) + iv(x, y) and z0 = x0 + iy0. The limit

lim
z→z0

f(z)

exists if and only if both of the limits

lim
(x,y)→(x0,y0)

u(x, y), lim
(x,y)→(x0,y0)

v(x, y)

exist. In either case

lim
z→z0

f(z) = lim
(x,y)→(x0,y0)

u(x, y) + i lim
(x,y)→(x0,y0)

v(x, y).

Proof: (⇒) Suppose limz→z0 f(z) = L ∈ C. Let ε > 0. Choose δ > 0 so that 0 < |z −
z0| < δ implies |f(z)−L| < ε. Let d(P, Q) denote the usual distance between two points

P, Q ∈ R2. Then d((x, y), (x0, y0)) =
√

(x− x0)2 + (y − y0)2 = |(x− x0) + i(y − y0)| =
|(x + iy) − z0|. Therefore, 0 < d((x, y), (x0, y0)) < δ implies 0 < |(x + iy) − z0| < δ
which in turn implies that

|u(x, y)− Re L| = |Re f(x + iy)− Re L| ≤ |f(x + iy)− L| < ε

where we have used part (a) to obtain the first inequality. Since ε > 0 was arbitrary we
conclude that

lim
(x,y)→(x0,y0)

u(x, y) = Re L
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proving that the limit exists. Replacing Re with Im and u(x, y) with v(x, y) in the
above argument, we find that we also have

lim
(x,y)→(x0,y0)

v(x, y) = Im L.

This shows that the limits in question exist and also that

lim
z→z0

f(z) = L = Re L + i Im L = lim
(x,y)→(x0,y0)

u(x, y) + i lim
(x,y)→(x0,y0)

v(x, y).

(⇐) Now suppose that

lim
(x,y)→(x0,y0)

u(x, y) = a, lim
(x,y)→(x0,y0)

v(x, y) = b.

Let ε > 0. As above, we let d(P, Q) denote the distance between two points P, Q ∈ R2.
We can choose a δ1 > 0 so that 0 < d((x, y), (x0, y0)) < δ1 implies |u(x, y) − a| <
ε/2. Likewise, we can choose a δ2 > 0 so that 0 < d((x, y), (x0, y0)) < δ2 implies
|v(x, y)− b| < ε/2. Let δ = min{δ1, δ2} > 0. Then if 0 < |z− z0| < δ and z = x + iy we
have 0 < d((x, y), (x0, y0)) < δ and so

|f(z)− (a + bi)| ≤ |Re f(z)− Re(a + bi)|+ | Im f(z)− Im(a + bi)|
= |u(x, y)− a|+ |v(x, y)− b|
<

ε

2
+

ε

2
= ε.

Since ε > 0 was arbitrary we conclude that

lim
z→z0

f(z) = a + bi = lim
(x,y)→(x0,y0)

u(x, y) + i lim
(x,y)→(x0,y0)

v(x, y)

which is what we needed to show.

1.4.4. We must prove that C \ {z0} is open. Let z1 ∈ C \ {z0}. Then z1 6= z0 and so
r = |z1 − z0|/2 > 0. Let z ∈ D(z1, r). Then by the reverse triangle inequality

|z − z0| = |z1 − z0 + z − z1| ≥ |z1 − z0| − |z − z1| = 2r − |z − z1| > 2r − r = r > 0

so that z 6= z0 and hence z ∈ C \ {z0}. Since z ∈ D(z1, r) was arbitrary this proves that
D(z1, r) ⊂ C \ {z0}, and since z1 ∈ C \ {z0} was arbitrary this proves that C \ {z0} is open.
Hence {z0} is closed.

1.4.8. Let z0 ∈ C. Let ε > 0 and set δ = ε > 0. Then if |z − z0| < δ the reverse triangle
inequality implies

||z| − |z0|| ≤ |z − z0| < δ = ε.

Since ε > 0 was arbitrary this proves that |z| is continuous at the point z0. Since z0 ∈ C was
arbitrary we conclude that |z| is continuous on C.

1.4.10. Let ε > 0. Since limw→a h(w) = c there is a δ1 > 0 so that 0 < |w − a| < δ1 implies
|h(w) − c| < ε. Since limz→z0 f(z) = a and δ1 > 0 there is a δ > 0 so that 0 < |z − z0| < δ
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implies that |f(z) − a| < δ1. Therefore 0 < |z − z0| < δ implies that |f(z) − a| < δ1 which
implies that (taking w = f(z)) |h(f(z))− c| < ε. Since ε > 0 was arbitrary this proves that

lim
z→z0

h(f(z)) = c

which is what we sought to prove.

1.4.14.

(a) The set {z | Im z > 2} is open but not closed.

(b) The set {z | 1 ≤ |z| ≤ 2} is closed but not open.

(c) The set {z | − 1 < Re z ≤ 2} is neither open nor closed.

1.4.16(i).

(a) The set {z | 1 < Re z ≤ 2} is path connected and hence connected.

(b) The set {z | 2 ≤ |z| ≤ 3} is path connected and hence connected.

(c) The set {z | |z| ≤ 5 and | Im z| ≥ 1} is not connected.

1.4.20. Let A1, . . . , An ⊂ C be open sets. Let z ∈
⋂n

i=1 Ai. Then for each i we know that
z ∈ Ai and therefore we may choose ri > 0 so that D(z, ri) ⊂ Ai. Let r = min1≤i≤n ri. Then
r > 0 and for any i we have r ≤ ri so that D(z, r) ⊂ D(z, ri) ⊂ Ai. Hence D(z, r) ⊂

⋂n
i=1 Ai.

Since z was an arbitrary element of the intersection we conclude that
⋂n

i=1 Ai is open.

1.4.22. Let z0 ∈ A. Since f is continuous on A we have limz→z0 f(z) = f(z0). Since h is
continuous on f(A) it is, in particular, continuous at f(z0). Therefore, if we take a = f(z0)
in part (i) of the proposition we have

lim
z→z0

h(f(z)) = h(f(z0))

which proves that h(f(z)) is continuous at z0. Since z0 ∈ A was arbitrary this proves that
h(f(z)) is continuous on A.
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