COMPLEX ANALYSIS
FaLL 2007 HOMEWORK 3: SOLUTIONS

1.3.10. Claim: Using the branch of the square root function given in the problem, V22 = z
iff z=0o0rz=re? withr>0and0<6 <.

Proof: (<) Suppose z = re? withr > 0and 0 < 6 < 7. Then 22 = r2¢™’ and 0 < 20 < 27
so that
V22 = (r2)1/261‘29/2 — rei? —

(=) Suppose z is not of the desired form. We will show that v'2? # 2. In this case z = ret?
with 7 > 0 and ™ < 0 < 27. Then 22 = r2¢20 = r2¢1(20-27) 41 gince 0 < 20 — 27 < 27 we
have

V22 = (52) 2612022 _ poibin
Since z # 0, this is not the same as z.

1.3.34. If z = x + 1y, it is shown on page 38 of our text that
sin z = sinx cosh y + ¢ cos z sinh y.
We will use this below.

Let A = {z]|Rez| < n/2} and B = C\ {z|Imz = 0 and |2| > 1}. We are asked
to show that z +— sinz carries A onto B. Since sin(z) = sinz and sin(—z) = —sin(z),
it is sufficient to show that z + sinz maps A’ = {20 < Rez < 7n/2 and Imz > 0}
onto B = {z| Rez > 0and Imz > 0} \ {z] Imz = 0 and Rez > 1}. We will argue
geometrically.

Fix 29 € [0,7/2) and consider the vertical ray defined by z = z¢ + iy, y > 0. Writing
sin z = u + iv we find that the real and imaginary parts of the image of this ray under sin z
satisfy

u = sinxgcoshy
v = cosxgsinhy.

If zo = 0 then we have, in fact, v = 0 and v = sinhy. As y > 0, the points u + v then
trace out the non-negative imaginary axis. If ¢y # 0 then we know that sinxzy # 0 and
so as y > 0 varies, we find that the equations expressing v and v above give the standard
parametrization of the portion of hyperbola

u? v?
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: - = 1.
sinxy  cos?xg
that lies in the first quadrant.

As xy increases from 0 to m/2, the rays z = xg + iy cover all of A’. Moreover, the images
of our rays start at the positive imaginary axis and proceed to “bend toward” the part of



the real axis for which u > 1 (sketch a few image curves for z, approaching /2 so see what
I mean). It is then intuitively clear that as xy moves across the interval [0,7/2) the image
curves fill the set B’, which is what we wanted to show.

A more careful proof could be given by showing that given any w € B’ there is an xg so
that the image of the ray z = xo + iy passes through w. This is tedious (but not difficult)
and the details will not be given here.

1.4.2.

(a) For any z1, 2z € C we have, by properties of | - |,
|Rez; — Reza| = | Re(z1 — 22)| < |21 — 29
and
|Tm z; — Im 25| = [ Im(z; — 22)| < |21 — 29|
and finally (by the triangle inequality)
|21 — 22| = |Re(z1 — 29) +ilm(z; — 29)|
< |Re(z1 — 29)| + |t Im(21 — 22)|
= |Rez —Rez|+ |Imz; — Im 2.

(b) Theorem: Let f(z) = u(x,y) + iv(x,y) and 2o = x¢ + iyo. The limit
lim f(z)

zZ—20

exists if and only if both of the limits

lim  wu(x,y), lim  o(z,
(ZB,y)H(JBo,yO) ( y) (:E,y)ﬂ(xo,yo) ( y)

exist. In either case

lim f(z)= lm w(z,y)+i lm o(z,y).

z—=20 (z,y)—(w0,90) (@,y)—(0,90)

Proof: (=) Suppose lim,_,,, f(z) = L € C. Let ¢ > 0. Choose § > 0 so that 0 < |z —
2o < 0 implies |f(z) — L| < €. Let d(P, Q) denote the usual distance between two points
P,Q € R*. Then d((,y), (x0,%0)) = /(& — 20)* + (y — 30)* = |(z — x0) +i(y — yo)| =
|(z + iy) — z0|. Therefore, 0 < d((x,y), (z0,v0)) < 0 implies 0 < |(z + iy) — 20| <
which in turn implies that

lu(z,y) —ReL| = |Re f(x +iy) —Re L| < |f(z+iy) — L| <e

where we have used part (a) to obtain the first inequality. Since € > 0 was arbitrary we
conclude that
lim  wu(x,y) =RelL

(z,y)=(z0,90)



proving that the limit exists. Replacing Re with Im and w(z,y) with v(z,y) in the
above argument, we find that we also have

lim wv(z,y) =ImL.
(z,y)—(z0,y0) ( y>

This shows that the limits in question exist and also that

lim f(2) =L=ReL+ilmL= lim w(zr,y)+i lm o(z,y).

=20 (z,y)—(0,%0) (z,y)—(z0,y0)
(<) Now suppose that

lim  wu(z,y) =a, lim v(z,y) =b.
(:c,y)—>(:c0,y0) ( y) (x7y)_)(x07y0) ( y)
Let € > 0. As above, we let d(P, Q) denote the distance between two points P, Q € R.
We can choose a §; > 0 so that 0 < d((x,y), (z0,%0)) < d1 implies |u(z,y) — a| <
¢/2. Likewise, we can choose a d2 > 0 so that 0 < d((z,v), (x0,y0)) < J2 implies
lv(z,y) —b] < €/2. Let 6 = min{dy,02} > 0. Then if 0 < |z — 29| < 0 and z = = + iy we
have 0 < d((x,y), (z0,%0)) < ¢ and so
1f(2) — (a+bi)] < |Ref(z) —Re(a+bi)|+ |Im f(2) — Im(a + bi)|
= |U(x,y) o a| + |U($7y) - b|
2 2 '

Since € > 0 was arbitrary we conclude that

lim f(z) =a+bi= lim wu(x,y)+i lim o(z,y)

#T20 (I,y)ﬂ(xo,yo) (mvy)g’(anyO)

which is what we needed to show.

1.4.4. We must prove that C \ {z} is open. Let z; € C\ {z}. Then 23 # 2y and so
r = |21 — 20|/2 > 0. Let z € D(z1,r). Then by the reverse triangle inequality

lz—20l =|z1—20+2z—21| 2 |z1— 20| —|z—21|=2r—|z—2z|>2r—r=1r>0

so that z # zy and hence z € C\ {20}. Since z € D(z,r) was arbitrary this proves that
D(z,7) C C\ {20}, and since z; € C\ {2y} was arbitrary this proves that C\ {zy} is open.
Hence {2} is closed.

1.4.8. Let zp € C. Let € > 0 and set 6 = € > 0. Then if |z — zy| < 0 the reverse triangle
inequality implies

l|z] = |20]| < |z — 20| < =e.
Since € > 0 was arbitrary this proves that |z| is continuous at the point zy. Since zy € C was
arbitrary we conclude that |z| is continuous on C.

1.4.10. Let € > 0. Since lim,,_, h(w) = ¢ there is a §; > 0 so that 0 < |w — a| < d; implies
|h(w) — ¢| < e. Since lim,_,,, f(2) = a and d; > 0 there is a § > 0 so that 0 < |z — 29| < ¢
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implies that |f(z) — a| < 0;. Therefore 0 < |z — zy| < § implies that |f(z) — a|] < ¢; which
implies that (taking w = f(z2)) |h(f(2)) — ¢| < e. Since € > 0 was arbitrary this proves that

lim h(f(z)) =c

zZ—20
which is what we sought to prove.

1.4.14.

(a) The set {z| Im z > 2} is open but not closed.
(b) The set {z|1 < |z| <2} is closed but not open.

(c¢) The set {z| —1 < Rez < 2} is neither open nor closed.
1.4.16(i).

(a) The set {z]|1 < Rez < 2} is path connected and hence connected.
(b) The set {z]2 < |z| < 3} is path connected and hence connected.

(c) The set {z||z| <5 and |Imz| > 1} is not connected.

1.4.20. Let A;,..., A, C C be open sets. Let z € ();_; A;. Then for cach i we know that
z € A; and therefore we may choose r; > 0 so that D(z,r;) C A;. Let r = minj<;<, r;. Then
r > 0 and for any ¢ we have r < r; so that D(z,7) C D(z,r;) C A;. Hence D(z,7) C (i, 4.
Since z was an arbitrary element of the intersection we conclude that (), A; is open.

1.4.22. Let zp € A. Since f is continuous on A we have lim,_,,, f(z) = f(z0). Since h is
continuous on f(A) it is, in particular, continuous at f(zg). Therefore, if we take a = f(zo)
in part (i) of the proposition we have

I K(7(2)) = h(J(=0))

which proves that h(f(z)) is continuous at zy. Since zy € A was arbitrary this proves that
h(f(z)) is continuous on A.



