
Complex Analysis
Fall 2007 Homework 5: Solutions

1.5.22 If z = x + iy then

z4 = (x4 − 6x2y2 + y4) + i(4x3y − 4xy3)

so that u = Re(z4) = x4 − 6x2y2 + y4 and v = Im(z4) = 4x3y − 4xy3. We find that

∂2u

∂x2
=

∂

∂x

(
4x3 − 12xy2

)
= 12x2 − 12y2

and
∂2u

∂y2
=

∂

∂y

(
−12x2y + 4y3

)
= −12x2 + 12y2

so that

∇2u =
∂2u

∂x2
+

∂2u

∂y2
=
(
12x2 − 12y2

)
+
(
−12x2 + 12y2

)
= 0.

Since u is a polynomial in x and y its second-order partials are continuous and ∇2u = 0, u
is harmonic. We leave the analogous computation involving v to the student.

1.5.32 Claim: If u and v are functions defined on an open set A, u and v satisfy the
Cauchy-Riemann equations and u is harmonic on A, then v is a harmonic conjugate of u on
A.

We are given

∂u

∂x
=

∂v

∂y
∂u

∂y
= −∂v

∂x
.

Since u and v already satisfy the Cauchy-Riemann equations, to show that v is conjugate to
u it suffices to prove that v is also harmonic. Since u is harmonic, it’s second-order partial
derivatives are all continuous (by definition). The Cauchy-Riemann equations above then
imply the same is true of v’s second-order partials. So all we need to do to prove that v
is harmonic is verify that ∇2v = 0. Appealing to the Cauchy-Riemann equations again we
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have

∇2v =
∂2v

∂x2
+

∂v

∂y2

=
∂

∂x

(
∂v

∂x

)
+

∂

∂y

(
∂v

∂y

)
=

∂

∂x

(
−∂u

∂y

)
+

∂

∂y

(
∂u

∂x

)
= − ∂2u

∂x∂y
+− ∂2u

∂y∂x
= 0

since the continuity of the second-order mixed partials implies their equality. Hence, v is
harmonic. As noted above, this completes the proof.

Notice that the only facts we used were that u and v were related by the Cauchy-Riemann
equations and that u had continuous second-order partial derivatives. In fact, if these are the
only assumptions that we make then we can, in fact, prove that both u and v are harmonic
and that they are conjugate.

Now on to the problem at hand. Since we are given that u is harmonic on the disk the
claim shows that it is enough to verify that u and v satisfy the Cauchy-Riemann equations.
To (hopefully) clarify things slightly, let me alter the notation of the problem. Let’s define:

v(x, y) = c +

∫ y

y0

∂u

∂x
(x, t) dt−

∫ x

x0

∂u

∂y
(s, y0) ds

By the Fundamental Theorem of Calculus (the real-variable version) we have

∂v

∂y
(x, y) =

∂

∂y

∫ y

y0

∂u

∂x
(x, t) dt− ∂

∂y

∫ x

x0

∂u

∂y
(s, y0) ds

=
∂u

∂x
(x, y)

since the second expression is not a function of y. This is one of the Cauchy-Riemann
equations. Similar reasoning gives

∂v

∂x
(x, y) =

∂

∂x

∫ y

y0

∂u

∂x
(x, t) dt− ∂u

∂y
(x, y0).

Since ∂u
∂x

is continuous we can pass the partial differentiation under the integral sign1 to
obtain

∂v

∂x
(x, y) =

∫ y

y0

∂2u

∂x2
(x, t) dt− ∂u

∂y
(x, y0).

1If you’d like to see a proof of this fact let me know and I can provide you with the details.
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Since u is harmonic, ∂2u
∂x2 = −∂2u

∂y2 . Substituting this into the above and again using the

Fundamental Theorem of Calculus we have

∂v

∂x
(x, y) =

∫ y

y0

∂2u

∂x2
(x, t) dt− ∂u

∂y
(x, y0)

= −
∫ y

y0

∂2u

∂y2
(x, t) dt− ∂u

∂y
(x, y0)

= −

(
∂u

∂y
(x, t)

∣∣∣∣t=y

t=y0

)
− ∂u

∂y
(x, y0)

= −∂u

∂y
(x, y) +

∂u

∂y
(x, y0)−

∂u

∂y
(x, y0)

= −∂u

∂y
(x, y)

which is the other half of the Cauchy-Riemann equations.

1.6.2

(a) Choose a branch of log w that is analytic on the real axis and define 3z = ez log 3. Then
3z is analytic where the branch of log is and

d

dz
3z = (log 3)3z

there.

(b) Choose a ray R emanating from the origin in the complex plane and let log w denote
any branch of the logarithm that is analytic on C \ R. Denote by the set R − 1 the
ray translated to the left one unit in the plane (so that it emanates from −1). Then
log(z + 1) is analytic on C \ (R− 1) and

d

dz
log(1 + z) =

1

z + 1

there.

(c) Choose a ray R emanating from the origin in the complex plane and let log z denote
any branch of the logarithm that is analytic on C \ R. Then z(1 + i) = e(1+i) log z is
analytic on C \R and

d

dz
z1+i = (1 + i)zi = (1 + i)ei log z

there
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(d) Choose a ray R emanating from the origin in the complex plane and let log z denote

any branch of the logarithm that is analytic on C \ R. Then
√

z = z1/2 = e
1
2

log z is
analytic on C \R and

d

dz

√
z =

1

2
z−1/2 =

1

2
√

z

there.

(e) Choose a ray R emanating from the origin in the complex plane and let log z denote

any branch of the logarithm that is analytic on C \ R. Then 3
√

z = z1/3 = e
1
3

log z is
analytic on C \R and

d

dz
3
√

z =
1

3
z−2/3 =

1

3z2/3
=

1

3 ( 3
√

z)
2

there.

1.6.4

(a) Let log z denote the principal branch of the logarithm so that log 1 = 0. Then log z is
analytic at z = 1 and

lim
z→1

log z

z − 1
=

d

dz
log z

∣∣∣∣
z=1

=
1

z

∣∣∣∣
z=1

= 1.

If, however, we chose any other branch of the logarithm that was defined at z = 1, then
log 1 = 2nπi for some nonzero integer n and this can be used to show that the limit
above does not exist in this case.

(b) If f(z) = z, then

lim
z→1

z − 1

z − 1
= lim

z→1

f(z)− 1

z − 1

which is the definition of f ′(1). However, we know that f(z) is not analytic anywhere
so that f ′(1) does not exist. Hence, the limit in question does not exist.

1.6.8 For simplicity, let’s assume that both u and v have continuous first-order partial
derivatives. Then the function f = u+ iv is analytic on A and so are both (f(z))2 and ef(z).
One easily checks that

Re(f(z))2 = u2 − v2 = u1

Im(f(z))2 = 2uv = v1
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and

Re ef(z) = eu cos v = u2

Im ef(z) = eu sin v = v2.

SInce they are the real and imaginary parts of analytic functions, we find that the pairs
u1, v1 and u2, v2 satisfy the Cauchy-Riemann equations on A.

A comment is in order here. The continuity assumption on the partial derivatives of u
and v is not really necessary. One can use the multi-variate chain rule to show that if g(z)
is analytic and u and v satisfy the Cauchy-Riemann equations then so, too, do the real and
imaginary parts of g(u + iv).

1.6.10

(a) We let
√

w denote the principal branch of the square root. That is, we choose the

branch of the argument with −π ≤ arg w < π and set
√

w = e
1
2

log w. With this choice√
w is analytic on the set C \{u+iv |u ≤ 0, v = 0}. If we let R = {u+iv |u ≤ 0, v = 0}

and f(z) = z3− 1 then
√

z3 − 1 is analytic on f−1(C \R) = C \ f−1(R). Our goal is to
determine f−1(R).

We have z ∈ f−1(R) iff f(z) = z3 − 1 ∈ R. This can happen iff z3 ∈ R + 1 =

{u + iv |u ≤ 1, v = 0} = R ∪ [0, 1]. If x ∈ R then z3 = x has the solutions z = 3
√
|x|eiθ

where θ = π/3, π, 5π/3. It follows that z3 belongs to the ray R iff z belongs to one of
the rays emanating from 0 with angle π/3, π or 5π/3 relative to the real axis. SImilarly,
if x ∈ [0, 1] then z3 = x implies that z belongs to one of the line segments of length 1
making an angle of 0, 2π/3 or 4π/3 with the real axis. If you sketch these six regions
together you will see that f−1(R) can be described as follows: it consists of the rays
emanating from 0 with angle π/3, π or 5π/3 relative to the real axis together with their
length 1 extensions across the origin. If we call the set just described S, then

√
z3 − 1

is analytic on C \ S. Now go draw a picture of this set.

(b) Dealing with this function is much easier. Since sin w is entire, sin
√

z is analytic
wherever

√
z is. So, for example, if

√
z is a branch analytic on C \ R (where R is any

ray emanating from the origin) then sin
√

z is analytic on the same set.

2.1.2

(a) This is the hardest of the bunch. The curve γ consists of two line segments which are
parameterized by

γ1(t) = it, t ∈ [0, 1]

and
γ2(t) = (1− t)i + t(i + 2), t ∈ [0, 1].
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We have

x(γ1(t)) = Re γ1(t) = 0

γ′1(t) = i

and

x(γ2(t)) = Re γ2(t) = 2t

γ′2(t) = −i + i + 2 = 2

so that ∫
γ

x dz =

∫
γ1

x dz +

∫
γ2

x dz

=

∫ 1

0

(0)(i) dt +

∫ 1

0

(2t)(2) dt

= 4

∫ 1

0

t dt

= 2.

(b) This is the easiest of the bunch. A complex antiderivative for z2 + 2z + 3 is F (z) =
z3

3
+z2+3z so that by the fundamental theorem of calculus (for complex path integrals)∫

γ

z2 + 2z + 3 dz = F (2 + i)− F (1) =
29

3
+

32

3
i− 13

3
=

16

3
+

32

3
i.

(c) We can parametrize γ by
γ(t) = 1 + 2eit, t ∈ [0, 2π].

Since γ′(t) = 2ieit we have∫
γ

1

z − 1
dz =

∫ 2π

0

1

(1 + 2eit)− 1
2ieit dt =

∫ 2π

0

i dt = 2πi.

2.1.4 We begin by noting that

1

z2 − 2z
=

1

z(z − 2)
=
−1/2

z
+

1/2

z − 2
.

Consequently ∫
γ

1

z2 − 2z
dz = −1

2

∫
γ

1

z
dz +

1

2

∫
γ

1

z − 2
dz.
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Since γ lies entirely in the first and fourth quadrants, we can choose a branch of log z that
is analytic on γ. Since any such branch has 1/z as its derivative, the first integral above is
zero by the Fundamental Theorem of Calculus for path integrals. On the other hand, if we
parameterize γ by γ(t) = 2 + eit, t ∈ [0, 2π] then∫

γ

1

z − 2
dz =

∫ 2π

0

1

(2 + eit)− 2
ieit dt =

∫ 2π

0

i dt = 2πi.

Combining this with our earlier observations we have∫
γ

1

z2 − 2z
dz = −1

2
(0) +

1

2
2πi = πi.

2.1.6 For convenience we assume that all paths involved are C1. For a complete proof, one
must break each path in question into C1 pieces and apply the special cases that we prove
below.

(a) If γ is parameterized by γ : [a, b] → C then, using properties of real definite integrals,
we have ∫

γ

(c1f + c2g) =

∫ b

a

(c1f(γ(t)) + c2g(γ(t)))γ′(t) dt

= c1

∫ b

a

f(γ(t))γ′(t) dt + c2

∫ b

a

g(γ(t))γ′(t) dt

= c1

∫
γ

f + c2

∫
γ

g.

(b) If γ is parameterized by γ : [a, b] → R then −γ is given, on the same interval, by
(−γ)(t) = γ(a + b− t). By the chain rule (−γ)′(t) = −γ′(a + b− t) and therefore∫

−γ

f =

∫ b

a

f(−γ(t))(−γ)′(t) dt

= −
∫ b

a

f(γ(a + b− t))γ′(a + b− t) dt.

If we make the (real) change of variable s = a + b− t then ds = −dt and

−
∫ b

a

f(γ(a + b− t))γ′(a + b− t) dt =

∫ a

b

f(γ(s))γ′(s) ds

= −
∫ b

a

f(γ(s))γ′(s) ds

= −
∫

γ

f
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which is what we wanted to show.

(c) If γ1 is parameterized by γ1 : [a, b] → C and γ2 by γ2 : [b, c] → C then we know that

(γ1 + γ2)(t) =

{
γ1(t) , t ∈ [a, b]

γ2(t) , t ∈ [b, c]

and hence

(γ1 + γ2)
′(t) =

{
γ′1(t) , t ∈ [a, b]

γ′2(t) , t ∈ [b, c].

It follows that∫
γ1+γ2

f =

∫ c

a

f((γ1 + γ2)(t))(γ1 + γ2)
′(t) dt

=

∫ b

a

f((γ1 + γ2)(t))(γ1 + γ2)
′(t) dt +

∫ c

b

f((γ1 + γ2)(t))(γ1 + γ2)
′(t) dt

=

∫ b

a

f(γ1(t))γ
′
1(t) dt +

∫ c

b

f(γ2(t))γ
′
2(t) dt

=

∫
γ1

f +

∫
γ2

f.

2.1.8

(a) We can parameterize the line segment from 0 to 1+i by γ(t) = t(1 + i), t ∈ [0, 1]. In

this case we find that γ′(t) = 1 + i and γ(t)
2

= t2(1− i)2 so that∫
γ

z2 dz =

∫ 1

0

t2(1− i)2(1 + i) dt

= 2(1− i)

∫ 1

0

t2 dt =
2

3
(1− i)

(b) Since the path in question consists of two line segments, we must parameterize and
integrate over each separately. The first segment is given by γ1(t) = t, t ∈ [0, 1].
Therefore ∫

γ1

z2 dz =

∫ 1

0

t2 dt =
1

3
.
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The second segment can be parameterized as γ2(t) = 1 + it, t ∈ [0, 1] and hence∫
γ2

z2 dz =

∫ 1

0

(1− it)2i dt

=

∫ 1

0

2t + i(1− t2) dt

=

(
t2 + i

(
t− t2

2

))∣∣∣∣1
0

= 1 +
i

2
.

Finally, we have ∫
γ

z2 dz =

∫
γ1

z2 dz +

∫
γ2

z2 dz =
4

3
+

i

2
.

If z2 were the derivative of an analytic function then, by the Fundamental Theorem, the
values of all path integrals of z2 beginning at 0 and ending at 1+ i would be the same. Since
the computation above shows that this is not the case, we conclude that z2 has no complex
antiderivative.

2.1.10 If |z| = 2 then by the reverse triangle inequality we have

|z2 + 1| ≥ |z2| − |1| = |z|2 − 1 = 22 − 1 = 3

so that ∣∣∣∣ 1

z2 + 1

∣∣∣∣ =
|1|

|z2 + 1|
≤ 1

3
.

Hence, if C is the arc of the circle |z| = 2 lying in the first quadrant then∣∣∣∣∫
C

dz

2 + z2

∣∣∣∣ ≤ 1

3
`(C) =

π

3
.

2.1.12 On the set C\{z | Re z ≤ 0} the principal branch of the logarithm is an antiderivative
of 1/z. By the Fundamental Theorem of Calculus it follows immediately that∫

γ

1

z
dz = 0

for any closed curve γ in C \ {z | Re z ≤ 0}.
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