Complex Analysis Fall 2007

Homework 5: Solutions

1.5.22 If z = x + iy then

 $z^4 = (x^4 - 6x^2y^2 + y^4) + i(4x^3y - 4xy^3)$ so that $u = \text{Re}(z^4) = x^4 - 6x^2y^2 + y^4$ and $v = \text{Im}(z^4) = 4x^3y - 4xy^3$. We find that

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(4x^3 - 12xy^2 \right) = 12x^2 - 12y^2$$

and

$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(-12x^2y + 4y^3 \right) = -12x^2 + 12y^2$$

so that

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = (12x^2 - 12y^2) + (-12x^2 + 12y^2) = 0.$$

Since u is a polynomial in x and y its second-order partials are continuous and $\nabla^2 u = 0$, u is harmonic. We leave the analogous computation involving v to the student.

1.5.32 Claim: If u and v are functions defined on an open set A, u and v satisfy the Cauchy-Riemann equations and u is harmonic on A, then v is a harmonic conjugate of u on A.

We are given

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Since u and v already satisfy the Cauchy-Riemann equations, to show that v is conjugate to u it suffices to prove that v is also harmonic. Since u is harmonic, it's second-order partial derivatives are all continuous (by definition). The Cauchy-Riemann equations above then imply the same is true of v's second-order partials. So all we need to do to prove that v is harmonic is verify that $\nabla^2 v = 0$. Appealing to the Cauchy-Riemann equations again we

have

$$\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial v}{\partial y^2}$$

= $\frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial y} \right)$
= $\frac{\partial}{\partial x} \left(-\frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right)$
= $-\frac{\partial^2 u}{\partial x \partial y} + -\frac{\partial^2 u}{\partial y \partial x}$
= 0

since the continuity of the second-order mixed partials implies their equality. Hence, v is harmonic. As noted above, this completes the proof.

Notice that the only facts we used were that u and v were related by the Cauchy-Riemann equations and that u had continuous second-order partial derivatives. In fact, if these are the only assumptions that we make then we can, in fact, prove that *both* u and v are harmonic and that they are conjugate.

Now on to the problem at hand. Since we are given that u is harmonic on the disk the claim shows that it is enough to verify that u and v satisfy the Cauchy-Riemann equations. To (hopefully) clarify things slightly, let me alter the notation of the problem. Let's define:

$$v(x,y) = c + \int_{y_0}^{y} \frac{\partial u}{\partial x}(x,t) \, dt - \int_{x_0}^{x} \frac{\partial u}{\partial y}(s,y_0) \, ds$$

By the Fundamental Theorem of Calculus (the real-variable version) we have

$$\frac{\partial v}{\partial y}(x,y) = \frac{\partial}{\partial y} \int_{y_0}^y \frac{\partial u}{\partial x}(x,t) dt - \frac{\partial}{\partial y} \int_{x_0}^x \frac{\partial u}{\partial y}(s,y_0) ds$$
$$= \frac{\partial u}{\partial x}(x,y)$$

since the second expression is not a function of y. This is one of the Cauchy-Riemann equations. Similar reasoning gives

$$\frac{\partial v}{\partial x}(x,y) = \frac{\partial}{\partial x} \int_{y_0}^y \frac{\partial u}{\partial x}(x,t) \, dt - \frac{\partial u}{\partial y}(x,y_0).$$

Since $\frac{\partial u}{\partial x}$ is continuous we can pass the partial differentiation under the integral sign¹ to obtain

$$\frac{\partial v}{\partial x}(x,y) = \int_{y_0}^y \frac{\partial^2 u}{\partial x^2}(x,t) \, dt - \frac{\partial u}{\partial y}(x,y_0).$$

 $^{^{1}}$ If you'd like to see a proof of this fact let me know and I can provide you with the details.

Since u is harmonic, $\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$. Substituting this into the above and again using the Fundamental Theorem of Calculus we have

$$\begin{aligned} \frac{\partial v}{\partial x}(x,y) &= \int_{y_0}^{y} \frac{\partial^2 u}{\partial x^2}(x,t) \, dt - \frac{\partial u}{\partial y}(x,y_0) \\ &= -\int_{y_0}^{y} \frac{\partial^2 u}{\partial y^2}(x,t) \, dt - \frac{\partial u}{\partial y}(x,y_0) \\ &= -\left(\frac{\partial u}{\partial y}(x,t)\Big|_{t=y_0}^{t=y}\right) - \frac{\partial u}{\partial y}(x,y_0) \\ &= -\frac{\partial u}{\partial y}(x,y) + \frac{\partial u}{\partial y}(x,y_0) - \frac{\partial u}{\partial y}(x,y_0) \\ &= -\frac{\partial u}{\partial y}(x,y) \end{aligned}$$

which is the other half of the Cauchy-Riemann equations.

1.6.2

(a) Choose a branch of log w that is analytic on the real axis and define $3^z = e^{z \log 3}$. Then 3^z is analytic where the branch of log is and

$$\frac{d}{dz}3^z = (\log 3)3^z$$

there.

(b) Choose a ray R emanating from the origin in the complex plane and let $\log w$ denote any branch of the logarithm that is analytic on $\mathbb{C} \setminus R$. Denote by the set R - 1 the ray translated to the left one unit in the plane (so that it emanates from -1). Then $\log(z+1)$ is analytic on $\mathbb{C} \setminus (R-1)$ and

$$\frac{d}{dz}\log(1+z) = \frac{1}{z+1}$$

there.

(c) Choose a ray R emanating from the origin in the complex plane and let $\log z$ denote any branch of the logarithm that is analytic on $\mathbb{C} \setminus R$. Then $z^{(1+i)} = e^{(1+i)\log z}$ is analytic on $\mathbb{C} \setminus R$ and

$$\frac{d}{dz}z^{1+i} = (1+i)z^i = (1+i)e^{i\log z}$$

there

(d) Choose a ray R emanating from the origin in the complex plane and let $\log z$ denote any branch of the logarithm that is analytic on $\mathbb{C} \setminus R$. Then $\sqrt{z} = z^{1/2} = e^{\frac{1}{2}\log z}$ is analytic on $\mathbb{C} \setminus R$ and

$$\frac{d}{dz}\sqrt{z} = \frac{1}{2}z^{-1/2} = \frac{1}{2\sqrt{z}}$$

there.

(e) Choose a ray R emanating from the origin in the complex plane and let $\log z$ denote any branch of the logarithm that is analytic on $\mathbb{C} \setminus R$. Then $\sqrt[3]{z} = z^{1/3} = e^{\frac{1}{3}\log z}$ is analytic on $\mathbb{C} \setminus R$ and

$$\frac{d}{dz}\sqrt[3]{z} = \frac{1}{3}z^{-2/3} = \frac{1}{3z^{2/3}} = \frac{1}{3\left(\sqrt[3]{z}\right)^2}$$

there.

1.6.4

(a) Let $\log z$ denote the principal branch of the logarithm so that $\log 1 = 0$. Then $\log z$ is analytic at z = 1 and

$$\lim_{z \to 1} \frac{\log z}{z - 1} = \frac{d}{dz} \log z \Big|_{z = 1} = \frac{1}{z} \Big|_{z = 1} = 1.$$

If, however, we chose any other branch of the logarithm that was defined at z = 1, then $\log 1 = 2n\pi i$ for some nonzero integer n and this can be used to show that the limit above does not exist in this case.

(b) If $f(z) = \overline{z}$, then

$$\lim_{z \to 1} \frac{\overline{z} - 1}{z - 1} = \lim_{z \to 1} \frac{f(z) - 1}{z - 1}$$

which is the definition of f'(1). However, we know that f(z) is not analytic anywhere so that f'(1) does not exist. Hence, the limit in question does not exist.

1.6.8 For simplicity, let's assume that both u and v have continuous first-order partial derivatives. Then the function f = u + iv is analytic on A and so are both $(f(z))^2$ and $e^{f(z)}$. One easily checks that

$$\operatorname{Re}(f(z))^2 = u^2 - v^2 = u_1$$

 $\operatorname{Im}(f(z))^2 = 2uv = v_1$

$$\operatorname{Re} e^{f(z)} = e^u \cos v = u_2$$
$$\operatorname{Im} e^{f(z)} = e^u \sin v = v_2.$$

Since they are the real and imaginary parts of analytic functions, we find that the pairs u_1, v_1 and u_2, v_2 satisfy the Cauchy-Riemann equations on A.

A comment is in order here. The continuity assumption on the partial derivatives of u and v is not really necessary. One can use the multi-variate chain rule to show that if g(z) is analytic and u and v satisfy the Cauchy-Riemann equations then so, too, do the real and imaginary parts of g(u + iv).

1.6.10

(a) We let \sqrt{w} denote the principal branch of the square root. That is, we choose the branch of the argument with $-\pi \leq \arg w < \pi$ and set $\sqrt{w} = e^{\frac{1}{2} \log w}$. With this choice \sqrt{w} is analytic on the set $C \setminus \{u + iv \mid u \leq 0, v = 0\}$. If we let $R = \{u + iv \mid u \leq 0, v = 0\}$ and $f(z) = z^3 - 1$ then $\sqrt{z^3 - 1}$ is analytic on $f^{-1}(\mathbb{C} \setminus R) = \mathbb{C} \setminus f^{-1}(R)$. Our goal is to determine $f^{-1}(R)$.

We have $z \in f^{-1}(R)$ iff $f(z) = z^3 - 1 \in R$. This can happen iff $z^3 \in R + 1 = \{u + iv \mid u \leq 1, v = 0\} = R \cup [0, 1]$. If $x \in R$ then $z^3 = x$ has the solutions $z = \sqrt[3]{|x|}e^{i\theta}$ where $\theta = \pi/3, \pi, 5\pi/3$. It follows that z^3 belongs to the ray R iff z belongs to one of the rays emanating from 0 with angle $\pi/3, \pi$ or $5\pi/3$ relative to the real axis. SImilarly, if $x \in [0, 1]$ then $z^3 = x$ implies that z belongs to one of the line segments of length 1 making an angle of $0, 2\pi/3$ or $4\pi/3$ with the real axis. If you sketch these six regions together you will see that $f^{-1}(R)$ can be described as follows: it consists of the rays emanating from 0 with angle $\pi/3, \pi$ or $5\pi/3$ relative to the real axis together with their length 1 extensions across the origin. If we call the set just described S, then $\sqrt{z^3 - 1}$ is analytic on $\mathbb{C} \setminus S$. Now go draw a picture of this set.

(b) Dealing with this function is much easier. Since $\sin w$ is entire, $\sin \sqrt{z}$ is analytic wherever \sqrt{z} is. So, for example, if \sqrt{z} is a branch analytic on $\mathbb{C} \setminus R$ (where R is any ray emanating from the origin) then $\sin \sqrt{z}$ is analytic on the same set.

2.1.2

(a) This is the hardest of the bunch. The curve γ consists of two line segments which are parameterized by

$$\gamma_1(t) = it, t \in [0, 1]$$

and

$$\gamma_2(t) = (1-t)i + t(i+2), \ t \in [0,1].$$

and

We have

$$\begin{aligned} x(\gamma_1(t)) &= \operatorname{Re} \gamma_1(t) = 0\\ \gamma_1'(t) &= i \end{aligned}$$

and

$$x(\gamma_2(t)) = \operatorname{Re} \gamma_2(t) = 2t$$

$$\gamma'_2(t) = -i + i + 2 = 2$$

so that

$$\int_{\gamma} x \, dz = \int_{\gamma_1} x \, dz + \int_{\gamma_2} x \, dz$$

= $\int_0^1 (0)(i) \, dt + \int_0^1 (2t)(2) \, dt$
= $4 \int_0^1 t \, dt$
= 2.

(b) This is the easiest of the bunch. A complex antiderivative for $z^2 + 2z + 3$ is $F(z) = \frac{z^3}{3} + z^2 + 3z$ so that by the fundamental theorem of calculus (for complex path integrals)

$$\int_{\gamma} z^2 + 2z + 3 \, dz = F(2+i) - F(1) = \frac{29}{3} + \frac{32}{3}i - \frac{13}{3} = \frac{16}{3} + \frac{32}{3}i.$$

(c) We can parametrize γ by

$$\gamma(t) = 1 + 2e^{it}, t \in [0, 2\pi].$$

Since $\gamma'(t) = 2ie^{it}$ we have

$$\int_{\gamma} \frac{1}{z-1} \, dz = \int_{0}^{2\pi} \frac{1}{(1+2e^{it})-1} 2ie^{it} \, dt = \int_{0}^{2\pi} i \, dt = 2\pi i dt$$

2.1.4 We begin by noting that

$$\frac{1}{z^2 - 2z} = \frac{1}{z(z-2)} = \frac{-1/2}{z} + \frac{1/2}{z-2}.$$

Consequently

$$\int_{\gamma} \frac{1}{z^2 - 2z} \, dz = -\frac{1}{2} \int_{\gamma} \frac{1}{z} \, dz + \frac{1}{2} \int_{\gamma} \frac{1}{z - 2} \, dz.$$

Since γ lies entirely in the first and fourth quadrants, we can choose a branch of $\log z$ that is analytic on γ . Since any such branch has 1/z as its derivative, the first integral above is zero by the Fundamental Theorem of Calculus for path integrals. On the other hand, if we parameterize γ by $\gamma(t) = 2 + e^{it}$, $t \in [0, 2\pi]$ then

$$\int_{\gamma} \frac{1}{z-2} \, dz = \int_{0}^{2\pi} \frac{1}{(2+e^{it})-2} i e^{it} \, dt = \int_{0}^{2\pi} i \, dt = 2\pi i.$$

Combining this with our earlier observations we have

$$\int_{\gamma} \frac{1}{z^2 - 2z} \, dz = -\frac{1}{2}(0) + \frac{1}{2}2\pi i = \pi i$$

2.1.6 For convenience we assume that all paths involved are C^1 . For a complete proof, one must break each path in question into C^1 pieces and apply the special cases that we prove below.

(a) If γ is parameterized by $\gamma : [a, b] \to \mathbb{C}$ then, using properties of real definite integrals, we have

$$\begin{aligned} \int_{\gamma} (c_1 f + c_2 g) &= \int_a^b (c_1 f(\gamma(t)) + c_2 g(\gamma(t))) \gamma'(t) \, dt \\ &= c_1 \int_a^b f(\gamma(t)) \gamma'(t) \, dt + c_2 \int_a^b g(\gamma(t)) \gamma'(t) \, dt \\ &= c_1 \int_{\gamma} f + c_2 \int_{\gamma} g. \end{aligned}$$

(b) If γ is parameterized by $\gamma : [a, b] \to \mathbb{R}$ then $-\gamma$ is given, on the same interval, by $(-\gamma)(t) = \gamma(a+b-t)$. By the chain rule $(-\gamma)'(t) = -\gamma'(a+b-t)$ and therefore

$$\int_{-\gamma} f = \int_{a}^{b} f(-\gamma(t))(-\gamma)'(t) dt$$
$$= -\int_{a}^{b} f(\gamma(a+b-t))\gamma'(a+b-t) dt$$

If we make the (real) change of variable s = a + b - t then ds = -dt and

$$-\int_{a}^{b} f(\gamma(a+b-t))\gamma'(a+b-t) dt = \int_{b}^{a} f(\gamma(s))\gamma'(s) ds$$
$$= -\int_{a}^{b} f(\gamma(s))\gamma'(s) ds$$
$$= -\int_{\gamma}^{\gamma} f$$

which is what we wanted to show.

(c) If γ_1 is parameterized by $\gamma_1: [a, b] \to \mathbb{C}$ and γ_2 by $\gamma_2: [b, c] \to \mathbb{C}$ then we know that

$$(\gamma_1 + \gamma_2)(t) = \begin{cases} \gamma_1(t) & , t \in [a, b] \\ \gamma_2(t) & , t \in [b, c] \end{cases}$$

and hence

$$(\gamma_1 + \gamma_2)'(t) = \begin{cases} \gamma_1'(t) &, t \in [a, b] \\ \gamma_2'(t) &, t \in [b, c]. \end{cases}$$

It follows that

$$\int_{\gamma_1 + \gamma_2} f = \int_a^c f((\gamma_1 + \gamma_2)(t))(\gamma_1 + \gamma_2)'(t) dt$$

= $\int_a^b f((\gamma_1 + \gamma_2)(t))(\gamma_1 + \gamma_2)'(t) dt + \int_b^c f((\gamma_1 + \gamma_2)(t))(\gamma_1 + \gamma_2)'(t) dt$
= $\int_a^b f(\gamma_1(t))\gamma_1'(t) dt + \int_b^c f(\gamma_2(t))\gamma_2'(t) dt$
= $\int_{\gamma_1} f + \int_{\gamma_2} f.$

2.1.8

(a) We can parameterize the line segment from 0 to 1+i by $\gamma(t) = t(1+i), t \in [0,1]$. In this case we find that $\gamma'(t) = 1 + i$ and $\overline{\gamma(t)}^2 = t^2(1-i)^2$ so that

$$\int_{\gamma} \overline{z}^2 dz = \int_0^1 t^2 (1-i)^2 (1+i) dt$$
$$= 2(1-i) \int_0^1 t^2 dt = \frac{2}{3}(1-i)$$

(b) Since the path in question consists of two line segments, we must parameterize and integrate over each separately. The first segment is given by $\gamma_1(t) = t, t \in [0, 1]$. Therefore

$$\int_{\gamma_1} \overline{z}^2 \, dz = \int_0^1 t^2 \, dt = \frac{1}{3}.$$

The second segment can be parameterized as $\gamma_2(t) = 1 + it, t \in [0, 1]$ and hence

$$\int_{\gamma_2} \overline{z}^2 dz = \int_0^1 (1 - it)^2 i dt$$

= $\int_0^1 2t + i(1 - t^2) dt$
= $\left(t^2 + i \left(t - \frac{t^2}{2} \right) \right) \Big|_0^1$
= $1 + \frac{i}{2}.$

Finally, we have

$$\int_{\gamma} \overline{z}^2 dz = \int_{\gamma_1} \overline{z}^2 dz + \int_{\gamma_2} \overline{z}^2 dz = \frac{4}{3} + \frac{i}{2}.$$

If \overline{z}^2 were the derivative of an analytic function then, by the Fundamental Theorem, the values of all path integrals of \overline{z}^2 beginning at 0 and ending at 1+i would be the same. Since the computation above shows that this is not the case, we conclude that \overline{z}^2 has no complex antiderivative.

2.1.10 If |z| = 2 then by the reverse triangle inequality we have

$$|z^{2} + 1| \ge |z^{2}| - |1| = |z|^{2} - 1 = 2^{2} - 1 = 3$$

so that

$$\left|\frac{1}{z^2+1}\right| = \frac{|1|}{|z^2+1|} \le \frac{1}{3}.$$

Hence, if C is the arc of the circle |z| = 2 lying in the first quadrant then

$$\left| \int_C \frac{dz}{2+z^2} \right| \le \frac{1}{3}\ell(C) = \frac{\pi}{3}.$$

2.1.12 On the set $\mathbb{C} \setminus \{z \mid \text{Re } z \leq 0\}$ the principal branch of the logarithm is an antiderivative of 1/z. By the Fundamental Theorem of Calculus it follows immediately that

$$\int_{\gamma} \frac{1}{z} \, dz = 0$$

for any closed curve γ in $\mathbb{C} \setminus \{z \mid \operatorname{Re} z \leq 0\}$.