COMPLEX ANALYSIS
FaLL 2007 HOMEWORK 5: SOLUTIONS

1.5.22 If 2z = z + iy then
2= (2" — 6%y + yt) +i(4xdy — day?)

so that u = Re(2?) = 2* — 62%y? + y* and v = Im(2?) = 423y — 4oy®. We find that

% = % (42° — 122y%) = 122° — 12¢°
and Pu 0
oy~ dy (—122%y + 4y°) = —122° + 12y°
so that Py 5
Viu = 7 T ap (122 — 12¢%) + (—122° 4 12y%) = 0.

Since u is a polynomial in z and y its second-order partials are continuous and VZu = 0, u
is harmonic. We leave the analogous computation involving v to the student.

1.5.32 Claim: If v and v are functions defined on an open set A, u and v satisfy the
Cauchy-Riemann equations and u is harmonic on A, then v is a harmonic conjugate of u on

A.

We are given

ou  Ov
ox Oy
ou v
oy Ox

Since u and v already satisfy the Cauchy-Riemann equations, to show that v is conjugate to
u it suffices to prove that v is also harmonic. Since u is harmonic, it’s second-order partial
derivatives are all continuous (by definition). The Cauchy-Riemann equations above then
imply the same is true of v’s second-order partials. So all we need to do to prove that v
is harmonic is verify that Vv = 0. Appealing to the Cauchy-Riemann equations again we



have

v v
2 — - R
Vv = 0x? + Oy?

_ o (), 0 (o
0z \ Oz oy \ Oy

0 (o), 0 (ou
Oz dy Oy \ Ox
0*u 0*u

B 0xdy - Oyox
= 0

since the continuity of the second-order mixed partials implies their equality. Hence, v is
harmonic. As noted above, this completes the proof.

Notice that the only facts we used were that u and v were related by the Cauchy-Riemann
equations and that u had continuous second-order partial derivatives. In fact, if these are the
only assumptions that we make then we can, in fact, prove that both u and v are harmonic
and that they are conjugate. O]

Now on to the problem at hand. Since we are given that u is harmonic on the disk the
claim shows that it is enough to verify that « and v satisfy the Cauchy-Riemann equations.
To (hopefully) clarify things slightly, let me alter the notation of the problem. Let’s define:

Y ou T ou
U(Jf,y) = c+/yo &(ZL’,Z&) dt — /;130 8_y(87y0) ds

By the Fundamental Theorem of Calculus (the real-variable version) we have

@(x ) = 9 y@(xt)dt_ﬁ " ou
oy Y= oy Jy, Oz Y Juo Oy
ou

<87 yO) ds

since the second expression is not a function of y. This is one of the Cauchy-Riemann
equations. Similar reasoning gives

ov g [You ou
%(Jjay) - % w0 %<I,t) dt — a_y(xvyO)

Since % is continuous we can pass the partial differentiation under the integral sign' to
obtain 5 v 2 5
v u u
—(x,y) = —(x, t)dt — —(x, o).
or ( y) w0 8372 ( ) ay ( yO)

LIf you’d like to see a proof of this fact let me know and I can provide you with the details.



Since u is harmonic, 3277; = —‘3272‘. Substituting this into the above and again using the
Fundamental Theorem of Calculus we have

ov v 0%u ou

—(x,y) = —(Jf,t) dt——(l‘,yo)

ox vy 012 oy

Y 9%u ou
= — | s5(z,t)dt — —(z, )
/yo Iy dy

ou =y ou
= —| =—(z.,t — —(x,
<8y< >> o

ou ou ou
- _a_y(x7y) + a_y(m7y0) - a_y(xayO)

ou

which is the other half of the Cauchy-Riemann equations.

1.6.2

(a)

Choose a branch of log w that is analytic on the real axis and define 3* = ¢*!°63, Then
3% is analytic where the branch of log is and
d

— 3% —(] z
d23 (log 3)3

there.

Choose a ray R emanating from the origin in the complex plane and let logw denote
any branch of the logarithm that is analytic on C\ R. Denote by the set R — 1 the
ray translated to the left one unit in the plane (so that it emanates from —1). Then
log(z + 1) is analytic on C\ (R — 1) and

d 1
— log(1 = —
dz og(1 + 2) z+1

there.

Choose a ray R emanating from the origin in the complex plane and let log z denote
any branch of the logarithm that is analytic on C\ R. Then z(1 + i) = e(!*9le= jg
analytic on C\ R and

d i o o

et = (1+ i (1 ilogz

77 (I+12)2"=(1+1d)e

there



(d) Choose a ray R emanating from the origin in the complex plane and let log z denote
any branch of the logarithm that is analytic on C\ R. Then /z = 2V/2 = ¢3'987 js

analytic on C\ R and
1

d Y
dz\/E_QZ C2Yz

there.

(e) Choose a ray R emanating from the origin in the complex plane and let log z denote
any branch of the logarithm that is analytic on C\ R. Then ¢/z = z1/3 = e3lo87 js
analytic on C \ R and

there.

1.6.4

(a) Let log z denote the principal branch of the logarithm so that log1 = 0. Then log z is
analytic at z = 1 and

If, however, we chose any other branch of the logarithm that was defined at z = 1, then
log1 = 2nmi for some nonzero integer n and this can be used to show that the limit
above does not exist in this case.

(b) If f(2) =z, then
z—1 . f(z)—1
m—— = lim ———
=1z —1 2=1 z-1

which is the definition of f/(1). However, we know that f(z) is not analytic anywhere
so that f’(1) does not exist. Hence, the limit in question does not exist.

1.6.8 For simplicity, let’s assume that both u and v have continuous first-order partial
derivatives. Then the function f = u + 4v is analytic on A and so are both (f(2))? and /).
One easily checks that

Re(f(2))? = v’ —v*=u
Im(f(2))? = 2uw=u



and

Reef/® = ¢e¥cosv = uy

Ime/® = e'sinv = vy,

SInce they are the real and imaginary parts of analytic functions, we find that the pairs
uy,v1 and ug, vy satisfy the Cauchy-Riemann equations on A.

A comment is in order here. The continuity assumption on the partial derivatives of u
and v is not really necessary. One can use the multi-variate chain rule to show that if g(z)
is analytic and v and v satisfy the Cauchy-Riemann equations then so, too, do the real and
imaginary parts of g(u + iv).

1.6.10

(a)

We let /w denote the principal branch of the square root. That is, we choose the
branch of the argument with —7 < argw < 7 and set \/w = ezosv  With this choice
Vw is analytic on the set C'\ {u+iv|u <0, v =0}. fwelet R ={u+iv|u<0,v=0}
and f(z) = 2% — 1 then /2% — 1 is analytic on f~'(C\ R) = C\ f~!(R). Our goal is to
determine f~(R).

We have z € f~1(R) iff f(z) = 2> —1 € R. This can happen iff 2> € R+ 1 =
{u+iv|u<1,v=0}=RUI0,1]. If z € R then 2* = x has the solutions z = /|x|e?
where § = 7/3,7,57/3. Tt follows that 2z belongs to the ray R iff z belongs to one of
the rays emanating from 0 with angle 7 /3, 7w or 57/3 relative to the real axis. SImilarly,
if x € [0,1] then 2® = z implies that z belongs to one of the line segments of length 1
making an angle of 0,27/3 or 47 /3 with the real axis. If you sketch these six regions
together you will see that f~!(R) can be described as follows: it consists of the rays
emanating from 0 with angle 7/3, 7w or 57 /3 relative to the real axis together with their
length 1 extensions across the origin. If we call the set just described S, then /23 — 1
is analytic on C\ S. Now go draw a picture of this set.

Dealing with this function is much easier. Since sinw is entire, sin+/z is analytic
wherever /z is. So, for example, if 1/z is a branch analytic on C\ R (where R is any
ray emanating from the origin) then sin /2 is analytic on the same set.

2.1.2

(a)

This is the hardest of the bunch. The curve ~ consists of two line segments which are
parameterized by
7(t) =it, t €[0,1]
and
Y2(t) = (1 —t)i+t(i +2),te]|0,1].



We have

z(n(t)) = Rem(t) =0

%) = i
and
z(72(t)) = Re(t) =2t
Yo(t) = —i+i+2=2
so that

/xdz = /xdz—i—/a:dz
Y Y1 Y2

_ /01(0)(1') dt+/01(2t)(2) dt

1
:4/tdt
0

= 2.

(b) This is the easiest of the bunch. A complex antiderivative for 22 + 2z + 3 is F(z) =
3

% + 2%+ 3z so that by the fundamental theorem of calculus (for complex path integrals)
29 32 13 16 32

2+2:43dz=F2+i)—F(l) ==+ —i—— = — + —i.
/Vz+z—|—z (2+14) (1) s t3i-3 =3 t3¢

(c) We can parametrize v by ‘
Y(t) =1+ 2%, t € [0,27].

Since 7/(t) = 2ie" we have

1 2 1 ) 2
dz = — i dt = ) dt = 2.
Lz—l y4 /(; (1—|—261t)—126 /(; 7 Yy

2.1.4 We begin by noting that

L1 _-l2 )
22—2z  z2(z2-2) 2 z—2

1 1 1 1 1
/ 5 dz-——/—dz+—/ dz.
72—22 2 v 7 2 7,2'—2

6

Consequently




Since 7 lies entirely in the first and fourth quadrants, we can choose a branch of log z that
is analytic on 7. Since any such branch has 1/z as its derivative, the first integral above is
zero by the Fundamental Theorem of Calculus for path integrals. On the other hand, if we
parameterize v by y(t) = 2 + €, t € [0, 27] then

1 27 1 ) 27
/ dz = / — e dt = / 1 dt = 2mi.

Combining this with our earlier observations we have

1 1 1, . .
/732 —5, dz = —5(0) + 527” = Ti.

2.1.6 For convenience we assume that all paths involved are C'. For a complete proof, one
must break each path in question into C*! pieces and apply the special cases that we prove
below.

(a) If ~ is parameterized by v : [a,b] — C then, using properties of real definite integrals,
we have

b
/ (cof +cag) = / (e f (1)) + eag( ()7 (2) dt

Y

_ / PN @it e, [ ) (1) de

= 01Lf+02Lg.

7 1s parameterized by v : |a,b] — then —v 1s given, on the same interval, by
b) If v i ized b b R th is gi h i I, b
(—7)(t) = v(a +b—t). By the chain rule (=)' (t) = —7'(a + b —t) and therefore

/ ;= / F(= () (=) () dt

b
= —/ f(y(a+b—1)(a+b—t)dt.

If we make the (real) change of variable s = a + b —t then ds = —dt and

b a
- / f(la+b—t)(atb—tydt = / F(1() () ds



which is what we wanted to show.

(c) If 7 is parameterized by v, : [a,b] — C and 5 by 7 : [b,¢] — C then we know that

o Vl(t) N t e [a,b]
(71 +72)(t) = {72(75) te b

and hence

It follows that

/ ot - /Cf((%+72)(t))(71+72)'(t)dt
= /f((%+72)(t))(71+72)/(t)dt+/bcf((%+72)(t))(71+72)/(75)dt
_ / Fn (0 dt + / () di

- /%f+/wf.

2.1.8

(a) We can parameterize the line segment from 0 to 14+i by ~(¢) = ¢(1 + 1), t € [0,1]. In

this case we find that 7/(¢) = 1 +4 and 7(25)2 = t?(1 —7)? so that
1
/?@::/ﬂuwﬂuwﬁ
¥ 0
! 2
—2Q—Q/ﬁﬁ——u—n
; 3

(b) Since the path in question consists of two line segments, we must parameterize and
integrate over each separately. The first segment is given by v, (t) = ¢, t € [0,1].

Therefore .
1
/?m:/ﬁﬁ:<
Y1 0 3



The second segment can be parameterized as ,(t) = 1 +it, t € [0,1] and hence

1
/Ezdz = /(1—it)2idt
Y2 0

1
= /2t+z’(1—t2)dt
0

()

i
= 1+4-.
T3

/§2dz:/§2dz+/22dz:
v Y1 Y2

If 22 were the derivative of an analytic function then, by the Fundamental Theorem, the
values of all path integrals of zZ? beginning at 0 and ending at 1+ i would be the same. Since
the computation above shows that this is not the case, we conclude that z has no complex
antiderivative.

1

0

Finally, we have

Lo i~
N | .

+

2.1.10 If |z| = 2 then by the reverse triangle inequality we have
22+ 1] > |2 -1 =]:P-1=22-1=3

so that
1 1 1
= < Z.
2241 |224+1] — 3
Hence, if C' is the arc of the circle |z| = 2 lying in the first quadrant then
dz 1 s
< () ==
/c 24227 3 (©) 3

2.1.12 On the set C\ {z| Re z < 0} the principal branch of the logarithm is an antiderivative
of 1/z. By the Fundamental Theorem of Calculus it follows immediately that

1
/—dZ:O
v 2

for any closed curve v in C\ {z| Rez < 0}.



