1.5.22 If $z=x+i y$ then

$$
z^{4}=\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)+i\left(4 x^{3} y-4 x y^{3}\right)
$$

so that $u=\operatorname{Re}\left(z^{4}\right)=x^{4}-6 x^{2} y^{2}+y^{4}$ and $v=\operatorname{Im}\left(z^{4}\right)=4 x^{3} y-4 x y^{3}$. We find that

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(4 x^{3}-12 x y^{2}\right)=12 x^{2}-12 y^{2}
$$

and

$$
\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial}{\partial y}\left(-12 x^{2} y+4 y^{3}\right)=-12 x^{2}+12 y^{2}
$$

so that

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\left(12 x^{2}-12 y^{2}\right)+\left(-12 x^{2}+12 y^{2}\right)=0 .
$$

Since u is a polynomial in x and y its second-order partials are continuous and $\nabla^{2} u=0, u$ is harmonic. We leave the analogous computation involving v to the student.
1.5.32 Claim: If u and v are functions defined on an open set A, u and v satisfy the Cauchy-Riemann equations and u is harmonic on A, then v is a harmonic conjugate of u on A.

We are given

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} & =-\frac{\partial v}{\partial x}
\end{aligned}
$$

Since u and v already satisfy the Cauchy-Riemann equations, to show that v is conjugate to u it suffices to prove that v is also harmonic. Since u is harmonic, it's second-order partial derivatives are all continuous (by definition). The Cauchy-Riemann equations above then imply the same is true of v 's second-order partials. So all we need to do to prove that v is harmonic is verify that $\nabla^{2} v=0$. Appealing to the Cauchy-Riemann equations again we
have

$$
\begin{aligned}
\nabla^{2} v & =\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial v}{\partial y^{2}} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial y}\right) \\
& =\frac{\partial}{\partial x}\left(-\frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right) \\
& =-\frac{\partial^{2} u}{\partial x \partial y}+-\frac{\partial^{2} u}{\partial y \partial x} \\
& =0
\end{aligned}
$$

since the continuity of the second-order mixed partials implies their equality. Hence, v is harmonic. As noted above, this completes the proof.

Notice that the only facts we used were that u and v were related by the Cauchy-Riemann equations and that u had continuous second-order partial derivatives. In fact, if these are the only assumptions that we make then we can, in fact, prove that both u and v are harmonic and that they are conjugate.

Now on to the problem at hand. Since we are given that u is harmonic on the disk the claim shows that it is enough to verify that u and v satisfy the Cauchy-Riemann equations. To (hopefully) clarify things slightly, let me alter the notation of the problem. Let's define:

$$
v(x, y)=c+\int_{y_{0}}^{y} \frac{\partial u}{\partial x}(x, t) d t-\int_{x_{0}}^{x} \frac{\partial u}{\partial y}\left(s, y_{0}\right) d s
$$

By the Fundamental Theorem of Calculus (the real-variable version) we have

$$
\begin{aligned}
\frac{\partial v}{\partial y}(x, y) & =\frac{\partial}{\partial y} \int_{y_{0}}^{y} \frac{\partial u}{\partial x}(x, t) d t-\frac{\partial}{\partial y} \int_{x_{0}}^{x} \frac{\partial u}{\partial y}\left(s, y_{0}\right) d s \\
& =\frac{\partial u}{\partial x}(x, y)
\end{aligned}
$$

since the second expression is not a function of y. This is one of the Cauchy-Riemann equations. Similar reasoning gives

$$
\frac{\partial v}{\partial x}(x, y)=\frac{\partial}{\partial x} \int_{y_{0}}^{y} \frac{\partial u}{\partial x}(x, t) d t-\frac{\partial u}{\partial y}\left(x, y_{0}\right) .
$$

Since $\frac{\partial u}{\partial x}$ is continuous we can pass the partial differentiation under the integral sign^{1} to obtain

$$
\frac{\partial v}{\partial x}(x, y)=\int_{y_{0}}^{y} \frac{\partial^{2} u}{\partial x^{2}}(x, t) d t-\frac{\partial u}{\partial y}\left(x, y_{0}\right)
$$

[^0]Since u is harmonic, $\frac{\partial^{2} u}{\partial x^{2}}=-\frac{\partial^{2} u}{\partial y^{2}}$. Substituting this into the above and again using the Fundamental Theorem of Calculus we have

$$
\begin{aligned}
\frac{\partial v}{\partial x}(x, y) & =\int_{y_{0}}^{y} \frac{\partial^{2} u}{\partial x^{2}}(x, t) d t-\frac{\partial u}{\partial y}\left(x, y_{0}\right) \\
& =-\int_{y_{0}}^{y} \frac{\partial^{2} u}{\partial y^{2}}(x, t) d t-\frac{\partial u}{\partial y}\left(x, y_{0}\right) \\
& =-\left(\left.\frac{\partial u}{\partial y}(x, t)\right|_{t=y_{0}} ^{t=y}\right)-\frac{\partial u}{\partial y}\left(x, y_{0}\right) \\
& =-\frac{\partial u}{\partial y}(x, y)+\frac{\partial u}{\partial y}\left(x, y_{0}\right)-\frac{\partial u}{\partial y}\left(x, y_{0}\right) \\
& =-\frac{\partial u}{\partial y}(x, y)
\end{aligned}
$$

which is the other half of the Cauchy-Riemann equations.

1.6.2

(a) Choose a branch of $\log w$ that is analytic on the real axis and define $3^{z}=e^{z \log 3}$. Then 3^{z} is analytic where the branch of \log is and

$$
\frac{d}{d z} 3^{z}=(\log 3) 3^{z}
$$

there.
(b) Choose a ray R emanating from the origin in the complex plane and let $\log w$ denote any branch of the logarithm that is analytic on $\mathbb{C} \backslash R$. Denote by the set $R-1$ the ray translated to the left one unit in the plane (so that it emanates from -1). Then $\log (z+1)$ is analytic on $\mathbb{C} \backslash(R-1)$ and

$$
\frac{d}{d z} \log (1+z)=\frac{1}{z+1}
$$

there.
(c) Choose a ray R emanating from the origin in the complex plane and let $\log z$ denote any branch of the logarithm that is analytic on $\mathbb{C} \backslash R$. Then $z^{(1+i)}=e^{(1+i) \log z}$ is analytic on $\mathbb{C} \backslash R$ and

$$
\frac{d}{d z} z^{1+i}=(1+i) z^{i}=(1+i) e^{i \log z}
$$

there
(d) Choose a ray R emanating from the origin in the complex plane and let $\log z$ denote any branch of the logarithm that is analytic on $\mathbb{C} \backslash R$. Then $\sqrt{z}=z^{1 / 2}=e^{\frac{1}{2} \log z}$ is analytic on $\mathbb{C} \backslash R$ and

$$
\frac{d}{d z} \sqrt{z}=\frac{1}{2} z^{-1 / 2}=\frac{1}{2 \sqrt{z}}
$$

there.
(e) Choose a ray R emanating from the origin in the complex plane and let $\log z$ denote any branch of the logarithm that is analytic on $\mathbb{C} \backslash R$. Then $\sqrt[3]{z}=z^{1 / 3}=e^{\frac{1}{3} \log z}$ is analytic on $\mathbb{C} \backslash R$ and

$$
\frac{d}{d z} \sqrt[3]{z}=\frac{1}{3} z^{-2 / 3}=\frac{1}{3 z^{2 / 3}}=\frac{1}{3(\sqrt[3]{z})^{2}}
$$

there.

1.6.4

(a) Let $\log z$ denote the principal branch of the $\operatorname{logarithm}$ so that $\log 1=0$. Then $\log z$ is analytic at $z=1$ and

$$
\lim _{z \rightarrow 1} \frac{\log z}{z-1}=\left.\frac{d}{d z} \log z\right|_{z=1}=\left.\frac{1}{z}\right|_{z=1}=1
$$

If, however, we chose any other branch of the logarithm that was defined at $z=1$, then $\log 1=2 n \pi i$ for some nonzero integer n and this can be used to show that the limit above does not exist in this case.
(b) If $f(z)=\bar{z}$, then

$$
\lim _{z \rightarrow 1} \frac{\bar{z}-1}{z-1}=\lim _{z \rightarrow 1} \frac{f(z)-1}{z-1}
$$

which is the definition of $f^{\prime}(1)$. However, we know that $f(z)$ is not analytic anywhere so that $f^{\prime}(1)$ does not exist. Hence, the limit in question does not exist.
1.6.8 For simplicity, let's assume that both u and v have continuous first-order partial derivatives. Then the function $f=u+i v$ is analytic on A and so are both $(f(z))^{2}$ and $e^{f(z)}$. One easily checks that

$$
\begin{aligned}
& \operatorname{Re}(f(z))^{2}=u^{2}-v^{2}=u_{1} \\
& \operatorname{Im}(f(z))^{2}=2 u v=v_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Re} e^{f(z)} & =e^{u} \cos v=u_{2} \\
\operatorname{Im} e^{f(z)} & =e^{u} \sin v=v_{2}
\end{aligned}
$$

SInce they are the real and imaginary parts of analytic functions, we find that the pairs u_{1}, v_{1} and u_{2}, v_{2} satisfy the Cauchy-Riemann equations on A.

A comment is in order here. The continuity assumption on the partial derivatives of u and v is not really necessary. One can use the multi-variate chain rule to show that if $g(z)$ is analytic and u and v satisfy the Cauchy-Riemann equations then so, too, do the real and imaginary parts of $g(u+i v)$.

1.6 .10

(a) We let \sqrt{w} denote the principal branch of the square root. That is, we choose the branch of the argument with $-\pi \leq \arg w<\pi$ and set $\sqrt{w}=e^{\frac{1}{2} \log w}$. With this choice \sqrt{w} is analytic on the set $C \backslash\{u+i v \mid u \leq 0, v=0\}$. If we let $R=\{u+i v \mid u \leq 0, v=0\}$ and $f(z)=z^{3}-1$ then $\sqrt{z^{3}-1}$ is analytic on $f^{-1}(\mathbb{C} \backslash R)=\mathbb{C} \backslash f^{-1}(R)$. Our goal is to determine $f^{-1}(R)$.
We have $z \in f^{-1}(R)$ iff $f(z)=z^{3}-1 \in R$. This can happen iff $z^{3} \in R+1=$ $\{u+i v \mid u \leq 1, v=0\}=R \cup[0,1]$. If $x \in R$ then $z^{3}=x$ has the solutions $z=\sqrt[3]{|x|} e^{i \theta}$ where $\theta=\pi / 3, \pi, 5 \pi / 3$. It follows that z^{3} belongs to the ray R iff z belongs to one of the rays emanating from 0 with angle $\pi / 3, \pi$ or $5 \pi / 3$ relative to the real axis. SImilarly, if $x \in[0,1]$ then $z^{3}=x$ implies that z belongs to one of the line segments of length 1 making an angle of $0,2 \pi / 3$ or $4 \pi / 3$ with the real axis. If you sketch these six regions together you will see that $f^{-1}(R)$ can be described as follows: it consists of the rays emanating from 0 with angle $\pi / 3, \pi$ or $5 \pi / 3$ relative to the real axis together with their length 1 extensions across the origin. If we call the set just described S, then $\sqrt{z^{3}-1}$ is analytic on $\mathbb{C} \backslash S$. Now go draw a picture of this set.
(b) Dealing with this function is much easier. Since $\sin w$ is entire, $\sin \sqrt{z}$ is analytic wherever \sqrt{z} is. So, for example, if \sqrt{z} is a branch analytic on $\mathbb{C} \backslash R$ (where R is any ray emanating from the origin) then $\sin \sqrt{z}$ is analytic on the same set.

2.1.2

(a) This is the hardest of the bunch. The curve γ consists of two line segments which are parameterized by

$$
\gamma_{1}(t)=i t, t \in[0,1]
$$

and

$$
\gamma_{2}(t)=(1-t) i+t(i+2), t \in[0,1] .
$$

We have

$$
\begin{aligned}
x\left(\gamma_{1}(t)\right) & =\operatorname{Re} \gamma_{1}(t)=0 \\
\gamma_{1}^{\prime}(t) & =i
\end{aligned}
$$

and

$$
\begin{aligned}
x\left(\gamma_{2}(t)\right) & =\operatorname{Re} \gamma_{2}(t)=2 t \\
\gamma_{2}^{\prime}(t) & =-i+i+2=2
\end{aligned}
$$

so that

$$
\begin{aligned}
\int_{\gamma} x d z & =\int_{\gamma_{1}} x d z+\int_{\gamma_{2}} x d z \\
& =\int_{0}^{1}(0)(i) d t+\int_{0}^{1}(2 t)(2) d t \\
& =4 \int_{0}^{1} t d t \\
& =2 .
\end{aligned}
$$

(b) This is the easiest of the bunch. A complex antiderivative for $z^{2}+2 z+3$ is $F(z)=$ $\frac{z^{3}}{3}+z^{2}+3 z$ so that by the fundamental theorem of calculus (for complex path integrals)

$$
\int_{\gamma} z^{2}+2 z+3 d z=F(2+i)-F(1)=\frac{29}{3}+\frac{32}{3} i-\frac{13}{3}=\frac{16}{3}+\frac{32}{3} i .
$$

(c) We can parametrize γ by

$$
\gamma(t)=1+2 e^{i t}, t \in[0,2 \pi] .
$$

Since $\gamma^{\prime}(t)=2 i e^{i t}$ we have

$$
\int_{\gamma} \frac{1}{z-1} d z=\int_{0}^{2 \pi} \frac{1}{\left(1+2 e^{i t}\right)-1} 2 i e^{i t} d t=\int_{0}^{2 \pi} i d t=2 \pi i
$$

2.1.4 We begin by noting that

$$
\frac{1}{z^{2}-2 z}=\frac{1}{z(z-2)}=\frac{-1 / 2}{z}+\frac{1 / 2}{z-2} .
$$

Consequently

$$
\int_{\gamma} \frac{1}{z^{2}-2 z} d z=-\frac{1}{2} \int_{\gamma} \frac{1}{z} d z+\frac{1}{2} \int_{\gamma} \frac{1}{z-2} d z
$$

Since γ lies entirely in the first and fourth quadrants, we can choose a branch of $\log z$ that is analytic on γ. Since any such branch has $1 / z$ as its derivative, the first integral above is zero by the Fundamental Theorem of Calculus for path integrals. On the other hand, if we parameterize γ by $\gamma(t)=2+e^{i t}, t \in[0,2 \pi]$ then

$$
\int_{\gamma} \frac{1}{z-2} d z=\int_{0}^{2 \pi} \frac{1}{\left(2+e^{i t}\right)-2} i e^{i t} d t=\int_{0}^{2 \pi} i d t=2 \pi i .
$$

Combining this with our earlier observations we have

$$
\int_{\gamma} \frac{1}{z^{2}-2 z} d z=-\frac{1}{2}(0)+\frac{1}{2} 2 \pi i=\pi i .
$$

2.1.6 For convenience we assume that all paths involved are C^{1}. For a complete proof, one must break each path in question into C^{1} pieces and apply the special cases that we prove below.
(a) If γ is parameterized by $\gamma:[a, b] \rightarrow \mathbb{C}$ then, using properties of real definite integrals, we have

$$
\begin{aligned}
\int_{\gamma}\left(c_{1} f+c_{2} g\right) & =\int_{a}^{b}\left(c_{1} f(\gamma(t))+c_{2} g(\gamma(t))\right) \gamma^{\prime}(t) d t \\
& =c_{1} \int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t+c_{2} \int_{a}^{b} g(\gamma(t)) \gamma^{\prime}(t) d t \\
& =c_{1} \int_{\gamma} f+c_{2} \int_{\gamma} g
\end{aligned}
$$

(b) If γ is parameterized by $\gamma:[a, b] \rightarrow \mathbb{R}$ then $-\gamma$ is given, on the same interval, by $(-\gamma)(t)=\gamma(a+b-t)$. By the chain rule $(-\gamma)^{\prime}(t)=-\gamma^{\prime}(a+b-t)$ and therefore

$$
\begin{aligned}
\int_{-\gamma} f & =\int_{a}^{b} f(-\gamma(t))(-\gamma)^{\prime}(t) d t \\
& =-\int_{a}^{b} f(\gamma(a+b-t)) \gamma^{\prime}(a+b-t) d t
\end{aligned}
$$

If we make the (real) change of variable $s=a+b-t$ then $d s=-d t$ and

$$
\begin{aligned}
-\int_{a}^{b} f(\gamma(a+b-t)) \gamma^{\prime}(a+b-t) d t & =\int_{b}^{a} f(\gamma(s)) \gamma^{\prime}(s) d s \\
& =-\int_{a}^{b} f(\gamma(s)) \gamma^{\prime}(s) d s \\
& =-\int_{\gamma} f
\end{aligned}
$$

which is what we wanted to show.
(c) If γ_{1} is parameterized by $\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and γ_{2} by $\gamma_{2}:[b, c] \rightarrow \mathbb{C}$ then we know that

$$
\left(\gamma_{1}+\gamma_{2}\right)(t)= \begin{cases}\gamma_{1}(t) & , t \in[a, b] \\ \gamma_{2}(t) & , t \in[b, c]\end{cases}
$$

and hence

$$
\left(\gamma_{1}+\gamma_{2}\right)^{\prime}(t)= \begin{cases}\gamma_{1}^{\prime}(t) & , t \in[a, b] \\ \gamma_{2}^{\prime}(t) & , t \in[b, c]\end{cases}
$$

It follows that

$$
\begin{aligned}
\int_{\gamma_{1}+\gamma_{2}} f & =\int_{a}^{c} f\left(\left(\gamma_{1}+\gamma_{2}\right)(t)\right)\left(\gamma_{1}+\gamma_{2}\right)^{\prime}(t) d t \\
& =\int_{a}^{b} f\left(\left(\gamma_{1}+\gamma_{2}\right)(t)\right)\left(\gamma_{1}+\gamma_{2}\right)^{\prime}(t) d t+\int_{b}^{c} f\left(\left(\gamma_{1}+\gamma_{2}\right)(t)\right)\left(\gamma_{1}+\gamma_{2}\right)^{\prime}(t) d t \\
& =\int_{a}^{b} f\left(\gamma_{1}(t)\right) \gamma_{1}^{\prime}(t) d t+\int_{b}^{c} f\left(\gamma_{2}(t)\right) \gamma_{2}^{\prime}(t) d t \\
& =\int_{\gamma_{1}} f+\int_{\gamma_{2}} f
\end{aligned}
$$

2.1.8

(a) We can parameterize the line segment from 0 to $1+\mathrm{i}$ by $\gamma(t)=t(1+i), t \in[0,1]$. In this case we find that $\gamma^{\prime}(t)=1+i$ and $\overline{\gamma(t)}^{2}=t^{2}(1-i)^{2}$ so that

$$
\begin{aligned}
\int_{\gamma} \bar{z}^{2} d z & =\int_{0}^{1} t^{2}(1-i)^{2}(1+i) d t \\
& =2(1-i) \int_{0}^{1} t^{2} d t=\frac{2}{3}(1-i)
\end{aligned}
$$

(b) Since the path in question consists of two line segments, we must parameterize and integrate over each separately. The first segment is given by $\gamma_{1}(t)=t, t \in[0,1]$. Therefore

$$
\int_{\gamma_{1}} \bar{z}^{2} d z=\int_{0}^{1} t^{2} d t=\frac{1}{3} .
$$

The second segment can be parameterized as $\gamma_{2}(t)=1+i t, t \in[0,1]$ and hence

$$
\begin{aligned}
\int_{\gamma_{2}} \bar{z}^{2} d z & =\int_{0}^{1}(1-i t)^{2} i d t \\
& =\int_{0}^{1} 2 t+i\left(1-t^{2}\right) d t \\
& =\left.\left(t^{2}+i\left(t-\frac{t^{2}}{2}\right)\right)\right|_{0} ^{1} \\
& =1+\frac{i}{2}
\end{aligned}
$$

Finally, we have

$$
\int_{\gamma} \bar{z}^{2} d z=\int_{\gamma_{1}} \bar{z}^{2} d z+\int_{\gamma_{2}} \bar{z}^{2} d z=\frac{4}{3}+\frac{i}{2}
$$

If \bar{z}^{2} were the derivative of an analytic function then, by the Fundamental Theorem, the values of all path integrals of \bar{z}^{2} beginning at 0 and ending at $1+i$ would be the same. Since the computation above shows that this is not the case, we conclude that \bar{z}^{2} has no complex antiderivative.
2.1.10 If $|z|=2$ then by the reverse triangle inequality we have

$$
\left|z^{2}+1\right| \geq\left|z^{2}\right|-|1|=|z|^{2}-1=2^{2}-1=3
$$

so that

$$
\left|\frac{1}{z^{2}+1}\right|=\frac{|1|}{\left|z^{2}+1\right|} \leq \frac{1}{3} .
$$

Hence, if C is the arc of the circle $|z|=2$ lying in the first quadrant then

$$
\left|\int_{C} \frac{d z}{2+z^{2}}\right| \leq \frac{1}{3} \ell(C)=\frac{\pi}{3}
$$

2.1.12 On the set $\mathbb{C} \backslash\{z \mid \operatorname{Re} z \leq 0\}$ the principal branch of the logarithm is an antiderivative of $1 / z$. By the Fundamental Theorem of Calculus it follows immediately that

$$
\int_{\gamma} \frac{1}{z} d z=0
$$

for any closed curve γ in $\mathbb{C} \backslash\{z \mid \operatorname{Re} z \leq 0\}$.

[^0]: ${ }^{1}$ If you'd like to see a proof of this fact let me know and I can provide you with the details.

