2.2.2 The function $f(z)=1 / z^{2}$ is analytic in $\mathbb{C} \backslash\{0\}$ and since γ contains 0 , it is homotopic so some number of copies of the unit circle in this set. Therefore the Deformation Theorem implies that

$$
\int_{\gamma} \frac{d z}{z^{2}}=\int_{|z|=1} \frac{d z}{z^{2}}=0
$$

by a previous computation.
One can also observe that $F(z)=-1 / z$ is an antiderivative for the integrand on the set $\mathbb{C} \backslash\{0\}$ and therefore by the Fundamental Theorem of Calculus

$$
\int_{\gamma} \frac{d z}{z^{2}}=0
$$

for any closed curve not passing through 0 .
2.2.4 Let $\log z$ denote the function defined on the region A in question that satisfies $e^{\log z}=z$ for all $z \in A$. When we originally introduced the complex logarithm we proved that if $e^{w}=z$ then $w=\log |z|+i \arg z$ for some choice of the argument. It follows that the equation $\log z=\log r+i \theta$ is valid at each point $z \in A$ for some choice of θ at each point. The observation to be made here is that since $\log z$ is analytic on A it is continuous on A and therefore so, too, is $\theta=\theta(z)$. From this it follows that as we "spiral" around the origin in A in the counterclockwise sense, $\theta(z)$ must continually increase. In particular, given the shape of A, we find that $\theta(z)$ cannot be restricted to lie in an interval of length 2π.
2.2.6 Let $\log z$ denote the principal branch of the logarithm. Then γ is contained in the region where $F(z)=z^{2} / 2-\log z$ is analytic and $F^{\prime}(z)=z-1 / z$ there. Hence, the Fundamental Theorem of Calculus gives

$$
\int_{\gamma}\left(z-\frac{1}{z}\right) d z=F(i)-F(1)=-1-\frac{i \pi}{2} .
$$

2.2.8 The function $f(z)=\frac{1}{z^{3}\left(z^{2}+10\right)}$ is analytic on $A=\{1 / 2<|z|<3\}$. It is easy to see that γ_{1} is homotopic to γ_{2} in A and therefore the Deformation Theorem implies

$$
\int_{\gamma_{1}} \frac{d z}{z^{3}\left(z^{2}+10\right)}=\int_{\gamma_{2}} \frac{d z}{z^{3}\left(z^{2}+10\right)}
$$

2.3.7

(a) The curve γ is an ellipse about the origin traversed once counterclockwise. This curve is homotopic in $\mathbb{C} \backslash\{0\}$ to the unit circle C. Since $1 / z$ is analytic in $\mathbb{C} \backslash\{0\}$ the deformation theorem implies that

$$
\int_{\gamma} \frac{d z}{z}=\int_{C} \frac{d z}{z}=2 \pi i
$$

(b) The function $F(z)=-1 / z$ is an antiderivative for $f(z)=1 / z^{2}$ on the set $\mathbb{C} \backslash\{0\}$. Since γ is a closed curve in this set the Fundamental Theorem of Calculus gives

$$
\int_{\gamma} \frac{d z}{z^{2}}=0
$$

(c) The function e^{z} / z is analytic on the disk $D(2,3 / 2)$. Since $\gamma \subset D(2,3 / 2)$, Cauchy's Theorem implies

$$
\int_{\gamma} \frac{e^{z} d z}{z}=0 .
$$

(d) We begin by observing that

$$
\frac{1}{z^{2}-1}=\frac{1}{2(z-1)}-\frac{1}{2(z+1)}
$$

Therefore

$$
\int_{\gamma} \frac{d z}{z^{2}-1}=\int_{\gamma} \frac{d z}{2(z-1)}-\int_{\gamma} \frac{d z}{2(z+1)}
$$

The function $1 / 2(z+1)$ is analytic on $D(1,2)$ so, since $\gamma \subset D(1,2)$, Cauchy's Theorem gives

$$
\int_{\gamma} \frac{d z}{2(z+1)}=0
$$

On the other hand, by previous work we know that

$$
\int_{\gamma} \frac{d z}{2(z-1)}=\frac{1}{2} \int_{\gamma} \frac{d z}{z-1}=\frac{1}{2} 2 \pi i=\pi i .
$$

Hence

$$
\int_{\gamma} \frac{d z}{z^{2}-1}=\pi i+0=\pi i
$$

(a) Let C denote the unit circle. Since $1 / z$ is analytic in $\mathbb{C} \backslash\{0\}$, if γ is homotopic to C in $\mathbb{C} \backslash\{0\}$ then

$$
\int_{\gamma} \frac{d z}{z}=\int_{C} \frac{d z}{z}=2 \pi i
$$

by the Deformation Theorem and an earlier computation.
(b) The curve γ in this case is an ellipse about the origin traversed once counter clockwise, which is homotopic in $\mathbb{C} \backslash\{0\}$ to the unit circle. By part (a)

$$
\int_{\gamma} \frac{d z}{d}=2 \pi i
$$

2.3.10 The function $F(z)=\frac{1}{2(1-z)^{2}}$ is an antiderivative for $f(z)=\frac{1}{(1-z)^{3}}$ on the set $\mathbb{C} \backslash\{1\}$. Since all of the curves in question lie entirely in this set, all of the integrals are zero by the Fundamental Theorem of Calculus.

