2.4.2

(a) We have several options at this point, so let's choose the one that involves Cauchy's Integral Formula. First let γ_{1} denote the contour that travels from 1 to -1 along the top half of the unit circle and then returns to 1 along the real axis. Let γ_{2} denote the contour that travels from -1 to 1 along the bottom half of the unit circle and then returns to -1 along the real axis. We then have $\gamma=\gamma_{1}+\gamma_{2}$ so that

$$
\int_{\gamma} \frac{z^{2}-1}{z^{2}+1} d z=\int_{\gamma_{1}} \frac{z^{2}-1}{z^{2}+1} d z+\int_{\gamma_{2}} \frac{z^{2}-1}{z^{2}+1} d z
$$

The function $f(z)=\frac{z^{2}-1}{z+i}$ is analytic inside and on γ_{1} so that Cauchy's Integral Formula gives

$$
i=f(i)=\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(z)}{(z-i)} d z=\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{z^{2}-1}{z^{2}+1} d z
$$

or

$$
\int_{\gamma_{1}} \frac{z^{2}-1}{z^{2}+1} d z=-2 \pi
$$

Likewise, with $g(z)=\frac{z^{2}-1}{z-i}$ we have

$$
-i=g(i)=\frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{g(z)}{(z-i)} d z=\frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{z^{2}-1}{z^{2}+1} d z
$$

so that

$$
\int_{\gamma_{2}} \frac{z^{2}-1}{z^{2}+1} d z=2 \pi
$$

Thus

$$
\int_{\gamma} \frac{z^{2}-1}{z^{2}+1} d z=-2 \pi+2 \pi=0
$$

(b) This one is much easier. Since $\sin e^{z}$ is analytic inside and on γ, the Cauchy integral formula gives

$$
\sin 1=\sin e^{0}=\frac{1}{2 \pi i} \int_{\gamma} \frac{\sin e^{z}}{z} d z
$$

so that

$$
\int_{\gamma} \frac{\sin e^{z}}{z} d z=2 \pi(\sin 1) i
$$

2.4 .5

(a) We know the integral must be zero because $1 / z^{3}$ has an antiderivative on $C \backslash\{0\}$, namely $-1 / 2 z^{2}$, but we can also establish this fact using the Cauchy Integral Formula. In particular, if $f(z)=1$ for all z then we have

$$
0=f^{\prime \prime}(0)=\frac{2!}{2 \pi i} \int_{\gamma} \frac{f(z)}{z^{3}} d z=\frac{1}{\pi i} \int_{\gamma} \frac{d z}{z^{3}}
$$

which gives the result.
(b) If we apply Cauchy's Integral Formula with $g(z)=\sin z$ we find that

$$
\frac{3!}{2 \pi i} \int_{\gamma} \frac{\sin z}{z^{4}} d z=\frac{3!}{2 \pi i} \int_{\gamma} \frac{g(z)}{z^{4}} d z=g^{\prime \prime \prime}(0)=-\cos 0=-1
$$

Hence

$$
\int_{\gamma} \frac{\sin z}{z^{4}} d z=-\frac{i \pi}{3}
$$

2.4.6 Since f is analytic on A, the Cauchy Integral Formula gives

$$
f^{\prime}\left(z_{0}\right) I\left(\gamma ; z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

But f^{\prime} is analytic on A, too, so we also have

$$
f^{\prime}\left(z_{0}\right) I\left(\gamma ; z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{z-z_{0}} d z
$$

It follows that

$$
\int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z=\int_{\gamma} \frac{f^{\prime}(z)}{z-z_{0}} d z
$$

2.4.8 Fix $z_{0} \in \mathbb{C}$. Let $\epsilon>0$. Since $f(z) / z \rightarrow 0$ as $z \rightarrow \infty$, there exists an $R_{0}>0$ so that $|z|>R_{0}$ implies $|f(z) / z|<\epsilon$. Let $R>0$ be any number satisfying $R>\left|z_{0}\right|+R_{0}$. Then if $\left|z-z_{0}\right|=R$ we have

$$
|z|=\left|z-z_{0}+z_{0}\right| \geq\left|z-z_{0}\right|-\left|z_{0}\right|=R-\left|z_{0}\right|>R_{0}
$$

so that

$$
|f(z)|<\epsilon|z|=\epsilon\left|z-z_{0}+z_{0}\right| \leq \epsilon\left(\left|z-z_{0}\right|+\left|z_{0}\right|\right)=\epsilon\left(R+\left|z_{0}\right|\right) .
$$

Applying Cauchy's Estimates on the circle $\left|z-z_{0}\right|=R$ we have

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{1}{R} \epsilon\left(R+\left|z_{0}\right|\right)=\frac{R+\left|z_{0}\right|}{R} \epsilon .
$$

Since R was an arbitrary number satisfying $R>\left|z_{0}\right|+R_{0}$, we may let R tend to infinity in the inequality above to obtain

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \epsilon
$$

But $\epsilon>0$ was arbitrary, so it must be the case that $f^{\prime}\left(z_{0}\right)=0$. Finally, $z_{0} \in \mathbb{C}$ was arbitrary, so we find that $f^{\prime}(z)=0$ for all $z \in \mathbb{C}$. Therefore f is constant.

2.4 .16

(a) Of course not. Morera's Theorem applies to the function $f(z)=1 / z^{2}$ only on the region $A=\mathbb{C} \backslash\{0\}$, since $f(z)$ fails to be continuous at $z=0$. Therefore it implies nothing about the analyticity of $f(z)$ at $z=0$.
(b) Again, of course it doesn't. Liouville's Theorem only applies to entire functions, and $f(z)=1 / z^{2}$ is not entire.
2.5.5 Let $h=f-g$. Then h is continuous on $\operatorname{cl}(A)$ and analytic on A. Since $f=g$ on $\operatorname{bd}(A), h=0$ there. Since A is bounded, the maximum modulus principle implies that

$$
0 \leq \sup _{z \in A}|h(z)|=\max _{z \in \operatorname{bd}(A)}|h(z)|=0 .
$$

Thus $\sup _{z \in A}|h(z)|=0$ which implies that $f-g=h=0$ on A. Hence $f=g$ on A.
2.5.18 Let f be an entire function and suppose that $\operatorname{Im} f(z) \leq 0$ for all $z \in \mathbb{C}$. Let $g(z)=e^{-i f(z)}$. Then g is entire and $|g(z)|=e^{\operatorname{Im} f(z)} \leq e^{0}=1$ for all $z \in \mathbb{C}$. By Liouville's Theorem, g must be constant. It follows that $-i f(\mathbb{C}) \subset\{c+2 n \pi i, \mid, n \in \mathbb{Z}\}$ for some fixed $c \in \mathbb{Z}$. However, \mathbb{C} is connected and f is continuous, so $-i f(\mathbb{C})$ is also connected. Since $\{c+2 n \pi i, \mid, n \in \mathbb{Z}\}$ consists of only discrete points, it's only connected subsets consist of single points. Hence $-i f(\mathbb{C})=c+2 n \pi i$ for some fixed $n \in \mathbb{Z}$. Thus, $f(z)=i c-2 n \pi$ for all $z \in \mathbb{C}$, i.e. f is constant.

