
Complex Analysis
Fall 2007 Homework 7: Solutions

2.4.2

(a) We have several options at this point, so let’s choose the one that involves Cauchy’s
Integral Formula. First let γ1 denote the contour that travels from 1 to -1 along the
top half of the unit circle and then returns to 1 along the real axis. Let γ2 denote
the contour that travels from -1 to 1 along the bottom half of the unit circle and then
returns to -1 along the real axis. We then have γ = γ1 + γ2 so that∫

γ

z2 − 1

z2 + 1
dz =

∫
γ1

z2 − 1

z2 + 1
dz +

∫
γ2

z2 − 1

z2 + 1
dz.

The function f(z) =
z2 − 1

z + i
is analytic inside and on γ1 so that Cauchy’s Integral

Formula gives

i = f(i) =
1

2πi

∫
γ1

f(z)

(z − i)
dz =

1

2πi

∫
γ1

z2 − 1

z2 + 1
dz

or ∫
γ1

z2 − 1

z2 + 1
dz = −2π.

Likewise, with g(z) =
z2 − 1

z − i
we have

−i = g(i) =
1

2πi

∫
γ2

g(z)

(z − i)
dz =

1

2πi

∫
γ2

z2 − 1

z2 + 1
dz

so that ∫
γ2

z2 − 1

z2 + 1
dz = 2π.

Thus ∫
γ

z2 − 1

z2 + 1
dz = −2π + 2π = 0.

(b) This one is much easier. Since sin ez is analytic inside and on γ, the Cauchy integral
formula gives

sin 1 = sin e0 =
1

2πi

∫
γ

sin ez

z
dz

so that ∫
γ

sin ez

z
dz = 2π(sin 1)i.
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2.4.5

(a) We know the integral must be zero because 1/z3 has an antiderivative on C \ {0},
namely −1/2z2, but we can also establish this fact using the Cauchy Integral Formula.
In particular, if f(z) = 1 for all z then we have

0 = f ′′(0) =
2!

2πi

∫
γ

f(z)

z3
dz =

1

πi

∫
γ

dz

z3

which gives the result.

(b) If we apply Cauchy’s Integral Formula with g(z) = sin z we find that

3!

2πi

∫
γ

sin z

z4
dz =

3!

2πi

∫
γ

g(z)

z4
dz = g′′′(0) = − cos 0 = −1.

Hence ∫
γ

sin z

z4
dz = −iπ

3
.

2.4.6 Since f is analytic on A, the Cauchy Integral Formula gives

f ′(z0)I(γ; z0) =
1

2πi

∫
γ

f(z)

(z − z0)2
dz

But f ′ is analytic on A, too, so we also have

f ′(z0)I(γ; z0) =
1

2πi

∫
γ

f ′(z)

z − z0

dz.

It follows that ∫
γ

f(z)

(z − z0)2
dz =

∫
γ

f ′(z)

z − z0

dz.

2.4.8 Fix z0 ∈ C. Let ε > 0. Since f(z)/z → 0 as z → ∞, there exists an R0 > 0 so that
|z| > R0 implies |f(z)/z| < ε. Let R > 0 be any number satisfying R > |z0| + R0. Then if
|z − z0| = R we have

|z| = |z − z0 + z0| ≥ |z − z0| − |z0| = R− |z0| > R0

so that
|f(z)| < ε|z| = ε|z − z0 + z0| ≤ ε (|z − z0|+ |z0|) = ε (R + |z0|) .
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Applying Cauchy’s Estimates on the circle |z − z0| = R we have

|f ′(z0)| ≤
1

R
ε (R + |z0|) =

R + |z0|
R

ε.

Since R was an arbitrary number satisfying R > |z0|+ R0, we may let R tend to infinity in
the inequality above to obtain

|f ′(z0)| ≤ ε.

But ε > 0 was arbitrary, so it must be the case that f ′(z0) = 0. Finally, z0 ∈ C was arbitrary,
so we find that f ′(z) = 0 for all z ∈ C. Therefore f is constant.

2.4.16

(a) Of course not. Morera’s Theorem applies to the function f(z) = 1/z2 only on the region
A = C \ {0}, since f(z) fails to be continuous at z = 0. Therefore it implies nothing
about the analyticity of f(z) at z = 0.

(b) Again, of course it doesn’t. Liouville’s Theorem only applies to entire functions, and
f(z) = 1/z2 is not entire.

2.5.5 Let h = f − g. Then h is continuous on cl(A) and analytic on A. Since f = g on
bd(A), h = 0 there. Since A is bounded, the maximum modulus principle implies that

0 ≤ sup
z∈A

|h(z)| = max
z∈bd(A)

|h(z)| = 0.

Thus supz∈A |h(z)| = 0 which implies that f − g = h = 0 on A. Hence f = g on A.

2.5.18 Let f be an entire function and suppose that Im f(z) ≤ 0 for all z ∈ C. Let
g(z) = e−if(z). Then g is entire and |g(z)| = eIm f(z) ≤ e0 = 1 for all z ∈ C. By Liouville’s
Theorem, g must be constant. It follows that −if(C) ⊂ {c + 2nπi, |, n ∈ Z} for some fixed
c ∈ Z. However, C is connected and f is continuous, so −if(C) is also connected. Since
{c + 2nπi, |, n ∈ Z} consists of only discrete points, it’s only connected subsets consist of
single points. Hence −if(C) = c + 2nπi for some fixed n ∈ Z. Thus, f(z) = ic− 2nπ for all
z ∈ C, i.e. f is constant.
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