
Complex Analysis
Fall 2007 Homework 8: Solutions

2.R.1

(a) Since sin z is entire, its integral around any closed curve is zero by Cauchy’s Theorem.

(b) Since sin z is entire and γ has a winding number of 1 about 0, the Cauchy Integral
Formula immediately gives

0 = sin 0 =
1

2πi

∫
γ

sin z

z
dz

so the integral is zero.

(c) Since sin z is entire and γ has a winding number of 1 about 0, the Cauchy Integral
Formula immediately gives

1 = cos 0 =
d

dz
(sin z)

∣∣∣∣
z

= 0 =
1

2πi

∫
γ

sin z

z2
dz

so the integral is 2πi.

(d) Since f(z) = sin ez is entire with f ′(z) = ez cos ez, the Cauchy Integral Formula imme-
diately gives

cos 1 = e0 cos e0 =
1

2πi

∫
|z|=1

sin ez

z2
dz

so the integral is 2π(cos 1)i.

2.R.3 See the textbook’s solution.

2.R.4

(a) Since deg z2P (z) = 2 + deg P (z) ≤ deg Q(z) we find that

lim
z→∞

z2P (z)

Q(z)
= a

for some a ∈ C (i.e. we are not in the case when the limit is infinite). Choose R > 0 so
that |z2P (z)/Q(z)− a| < 1 for |z| ≥ R. Then for |z| ≥ R we have∣∣∣∣z2P (z)

Q(z)

∣∣∣∣ =

∣∣∣∣z2P (z)

Q(z)
− a + a

∣∣∣∣ ≤ ∣∣∣∣z2P (z)

Q(z)
− a

∣∣∣∣ + |a| < 1 + |a|.
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If we let M = 1 + |a| and divide the inequality above by |z|2 we find that∣∣∣∣P (z)

Q(z)

∣∣∣∣ ≤ M

|z|2
for |z| ≥ R.

(b) Lemma: Let P (z) and Q(z) be nonzero polynomials with complex coefficients. If
deg P (z) + 2 ≤ deg Q(z) then

lim
R→∞

∫
|z|=R

P (z)

Q(z)
dz = 0.

Proof: First of all, since Q(z) has only finitely many zeros the integrals in question are
all defined for sufficiently large R. Choose R0 as in part (a), so that∣∣∣∣P (z)

Q(z)

∣∣∣∣ ≤ M

|z|2
for |z| ≥ R0.

If R > R0 and |z| = R then we have∣∣∣∣P (z)

Q(z)

∣∣∣∣ ≤ M

R2
for

and so ∣∣∣∣∫
|z|=R

P (z)

Q(z)
dz

∣∣∣∣ ≤ M

R2
2πR =

2πM

R
.

Letting R →∞ on the right we obtain the result.

Proposition: Let P (z) and Q(z) be nonzero polynomials with complex coefficients. Let
z1, z2, . . . zk ∈ C denote the (finite number of) zeros of Q(z) and let R0 = max{|z1|, |z2|, . . . , |zk|}.
If deg P (z) + 2 ≤ deg Q(z) and γ denotes the circle centered at zero of radius r > R0

then ∫
γ

P (z)

Q(z)
dz = 0.

Proof: We see immediately that P (z)/Q(z) is analytic on A = {|z| > R0}. If R > R0

and γR denotes the circle of radius R centered at 0 then γ and γR are homotopic in A.
Therefore ∫

γ

P (z)

Q(z)
dz =

∫
γR

P (z)

Q(z)
dz.

If we now apply the lemma we find that∫
γ

P (z)

Q(z)
dz = lim

R→∞

∫
γ

P (z)

Q(z)
dz

= lim
R→∞

∫
γR

P (z)

Q(z)
dz = 0.
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(c) Since the zeros of z2+1 are ±i, 1/(z2+1) and γ satisfy the hypotheses of the proposition
proven in part (b). Therefore ∫

γ

dz

z2 + 1
= 0.

2.R.11 The integral in question is just the parametrized version of the line integral

1

i

∫
|z|=1

ez

z2
dz.

Since ez is entire, and its own derivative, the Cauchy Integral Formula yields

1 = e0 =
1

2πi

∫
|z|=1

ez

z2
dz.

Thus ∫ 2π

0

e−iθeeiθ

dθ =
1

i

∫
|z|=1

ez

z2
dz = 2π.

2.R.16 Let g(z) = f(z)− z0. Then g is analytic inside and on the unit circle. If |z| = 1 then
|g(z)| = |f(z)− z0| < r since f maps the unit circle inside the disk D(z0, r). The maximum
modulus principle then implies that for |z′| ≤ 1 we have

|g(z′)| ≤ max
|z|=1

|g(z)| < r

(The strict inequality follows from the fact that |g(z)| attains its maximum value on |z| = 1,
and since |g(z)| 6= r for those z, the maximum value must not equal r either.) That is, for
z′ inside the unit disk we have

|f(z′)− z0| = |g(z)| < r

which proves that f maps the unit disk into the set D(z0, r).
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