2.R. 1

(a) Since $\sin z$ is entire, its integral around any closed curve is zero by Cauchy's Theorem.
(b) Since $\sin z$ is entire and γ has a winding number of 1 about 0 , the Cauchy Integral Formula immediately gives

$$
0=\sin 0=\frac{1}{2 \pi i} \int_{\gamma} \frac{\sin z}{z} d z
$$

so the integral is zero.
(c) Since $\sin z$ is entire and γ has a winding number of 1 about 0 , the Cauchy Integral Formula immediately gives

$$
1=\cos 0=\left.\frac{d}{d z}(\sin z)\right|_{z}=0=\frac{1}{2 \pi i} \int_{\gamma} \frac{\sin z}{z^{2}} d z
$$

so the integral is $2 \pi i$.
(d) Since $f(z)=\sin e^{z}$ is entire with $f^{\prime}(z)=e^{z} \cos e^{z}$, the Cauchy Integral Formula immediately gives

$$
\cos 1=e^{0} \cos e^{0}=\frac{1}{2 \pi i} \int_{|z|=1} \frac{\sin e^{z}}{z^{2}} d z
$$

so the integral is $2 \pi(\cos 1) i$.
2.R. 3 See the textbook's solution.

2.R. 4

(a) Since $\operatorname{deg} z^{2} P(z)=2+\operatorname{deg} P(z) \leq \operatorname{deg} Q(z)$ we find that

$$
\lim _{z \rightarrow \infty} \frac{z^{2} P(z)}{Q(z)}=a
$$

for some $a \in \mathbb{C}$ (i.e. we are not in the case when the limit is infinite). Choose $R>0$ so that $\left|z^{2} P(z) / Q(z)-a\right|<1$ for $|z| \geq R$. Then for $|z| \geq R$ we have

$$
\left|\frac{z^{2} P(z)}{Q(z)}\right|=\left|\frac{z^{2} P(z)}{Q(z)}-a+a\right| \leq\left|\frac{z^{2} P(z)}{Q(z)}-a\right|+|a|<1+|a| .
$$

If we let $M=1+|a|$ and divide the inequality above by $|z|^{2}$ we find that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{M}{|z|^{2}} \text { for }|z| \geq R .
$$

(b) Lemma: Let $P(z)$ and $Q(z)$ be nonzero polynomials with complex coefficients. If $\operatorname{deg} P(z)+2 \leq \operatorname{deg} Q(z)$ then

$$
\lim _{R \rightarrow \infty} \int_{|z|=R} \frac{P(z)}{Q(z)} d z=0
$$

Proof: First of all, since $Q(z)$ has only finitely many zeros the integrals in question are all defined for sufficiently large R. Choose R_{0} as in part (a), so that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{M}{|z|^{2}} \text { for }|z| \geq R_{0} .
$$

If $R>R_{0}$ and $|z|=R$ then we have

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{M}{R^{2}} \text { for }
$$

and so

$$
\left|\int_{|z|=R} \frac{P(z)}{Q(z)} d z\right| \leq \frac{M}{R^{2}} 2 \pi R=\frac{2 \pi M}{R} .
$$

Letting $R \rightarrow \infty$ on the right we obtain the result.
Proposition: Let $P(z)$ and $Q(z)$ be nonzero polynomials with complex coefficients. Let $z_{1}, z_{2}, \ldots z_{k} \in C$ denote the (finite number of) zeros of $Q(z)$ and let $R_{0}=\max \left\{\left|z_{1}\right|,\left|z_{2}\right|, \ldots,\left|z_{k}\right|\right\}$. If $\operatorname{deg} P(z)+2 \leq \operatorname{deg} Q(z)$ and γ denotes the circle centered at zero of radius $r>R_{0}$ then

$$
\int_{\gamma} \frac{P(z)}{Q(z)} d z=0
$$

Proof: We see immediately that $P(z) / Q(z)$ is analytic on $A=\left\{|z|>R_{0}\right\}$. If $R>R_{0}$ and γ_{R} denotes the circle of radius R centered at 0 then γ and γ_{R} are homotopic in A. Therefore

$$
\int_{\gamma} \frac{P(z)}{Q(z)} d z=\int_{\gamma_{R}} \frac{P(z)}{Q(z)} d z
$$

If we now apply the lemma we find that

$$
\begin{aligned}
\int_{\gamma} \frac{P(z)}{Q(z)} d z & =\lim _{R \rightarrow \infty} \int_{\gamma} \frac{P(z)}{Q(z)} d z \\
& =\lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{P(z)}{Q(z)} d z=0
\end{aligned}
$$

(c) Since the zeros of $z^{2}+1$ are $\pm i, 1 /\left(z^{2}+1\right)$ and γ satisfy the hypotheses of the proposition proven in part (b). Therefore

$$
\int_{\gamma} \frac{d z}{z^{2}+1}=0
$$

2.R. 11 The integral in question is just the parametrized version of the line integral

$$
\frac{1}{i} \int_{|z|=1} \frac{e^{z}}{z^{2}} d z
$$

Since e^{z} is entire, and its own derivative, the Cauchy Integral Formula yields

$$
1=e^{0}=\frac{1}{2 \pi i} \int_{|z|=1} \frac{e^{z}}{z^{2}} d z
$$

Thus

$$
\int_{0}^{2 \pi} e^{-i \theta} e^{e^{i \theta}} d \theta=\frac{1}{i} \int_{|z|=1} \frac{e^{z}}{z^{2}} d z=2 \pi .
$$

2.R. 16 Let $g(z)=f(z)-z_{0}$. Then g is analytic inside and on the unit circle. If $|z|=1$ then $|g(z)|=\left|f(z)-z_{0}\right|<r$ since f maps the unit circle inside the disk $D\left(z_{0}, r\right)$. The maximum modulus principle then implies that for $\left|z^{\prime}\right| \leq 1$ we have

$$
\left|g\left(z^{\prime}\right)\right| \leq \max _{|z|=1}|g(z)|<r
$$

(The strict inequality follows from the fact that $|g(z)|$ attains its maximum value on $|z|=1$, and since $|g(z)| \neq r$ for those z, the maximum value must not equal r either.) That is, for z^{\prime} inside the unit disk we have

$$
\left|f\left(z^{\prime}\right)-z_{0}\right|=|g(z)|<r
$$

which proves that f maps the unit disk into the set $D\left(z_{0}, r\right)$.

