
Complex Analysis
Fall 2007 Homework 9: Solutions

3.1.4

(a) Let z ∈ C \ {ni : n ∈ Z}. Then

lim
n→∞

∣∣∣∣1/(n2 + z2)

1/n2

∣∣∣∣ = lim
n→∞

∣∣∣∣ n2

n2 + z2

∣∣∣∣ = 1.

According to the limit comparison test from calculus, the series

∞∑
n=0

∣∣∣∣ 1

n2 + z2

∣∣∣∣
converges if and only if

∞∑
n=1

1

n2

converges. Since the latter series is known to converge, the former must as well. That
is,

∞∑
n=0

1

n2 + z2

converges absolutely for z ∈ C \ {ni : n ∈ Z}.

(b) Let D be any bounded subset of C \ {ni : n ∈ Z}. Then there is an C > 0 so that
|z| < C for all z ∈ D. For z ∈ D we then have

|n2 + z2| ≥ |n2| − |z2| = n2 − |z|2 > n2 − C2.

If n > C then the above implies that∣∣∣∣ 1

n2 + z2

∣∣∣∣ ≤ 1

n2 − C2
= Mn

for all z ∈ D. Appealing to the limit comparison test as above, we conclude that∑
n>C Mn converges. Hence, the Weierstrass M -test implies that∑

n>C

1

n2 + z2

converges uniformly and absolutely on D. Since neither of these modes of convergence
is altered by adding finitely many terms (Why? Convince yourself of this.) we conclude
that

∞∑
n=1

1

n2 + z2
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converges uniformly and absolutely on D. Since the functions 1/(n2z2) are all analytic
on D, we conclude that the series is an analytic function on D. Finally, since every
point z ∈ C \ {ni : n ∈ Z} belongs to some bounded subset, we see that the series
represents an analytic function on z ∈ C \ {ni : n ∈ Z}.

3.1.12 Let ε > 0 and Aε = {z ∈ C : |z| ≥ ε}. I will prove that

∞∑
n=1

1

n!zn

converges uniformly on Aε. Let z ∈ Aε. Then |z| ≥ ε so that∣∣∣∣ 1

n!zn

∣∣∣∣ ≤ 1

n!εn
= Mn.

Since

lim
n→∞

1/(n + 1)!εn+1

1/n!εn
= lim

n→∞

1

nε
= 0

the ratio test implies that
∑

Mn
converges. Since 1/n!zn is analytic on Aε for each n, the

Weierstrass M -test implies that the series in question converges uniformly and absolutely
to an analytic function on Aε. Since every point z ∈ C \ {0} is contained in some Aε, this
proves that the series gives us a function that is analytic on all of z ∈ C \ {0}.

As to the integral, since the series converges uniformly on A1/2 and the unit circle γ is
contained in this set, we have∫

γ

∞∑
n=1

1

n!zn
dz =

∞∑
n=1

1

n!

∫
γ

1

zn
dz = 2πi

since ∫
γ

1

zn
dz

is zero unless n = 1, in which case we know it’s 2πi.

3.1.20 Let ε > 0. Since {fn} converge uniformly on the boundary of A, they are uniformly
Cauchy there, and so there is an N ∈ Z+ so that |fn(z)−fm(z)| < ε for all m, n > N and all
z ∈ bd(A). Since the functions fn − fm are analytic on A, and A is bounded, the maximum
modulus principle then implies that |fn(z) − fm(z)| < ε for all m, n > N and all z ∈ A.
Since ε > 0 was arbitrary this proves that the sequence {fn} is uniformly Cauchy on A and
hence converges uniformly to a function f on A. Since the convergence is uniform on all of
A the Analytic Convergence Theorem applies and we conclude that f is analytic on A.
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3.2.2

(a) We apply the ratio test:

lim
n→∞

∣∣∣∣(n + 1)2zn+1

n2zn

∣∣∣∣ = lim
n→∞

(n + 1)2

n2
|z| = |z|.

It follows that the series in question converges (absolutely) when |z| < 1 and diverges
when |z| > 1. Hence, the radius of convergence is 1.

(b) Again, we apply the ratio test:

lim
n→∞

∣∣∣∣z2(n+1)/4n+1

z2n/4n

∣∣∣∣ = lim
n→∞

1

4
|z|2 =

|z|2

4
.

Hence the power series in question will converge (absolutely) for |z| < 2 and will diverge
for |z| > 2. That is, its radius of convergence is 2.

(c) Once more, its the ratio test to the rescue:

lim
n→∞

∣∣∣∣(n + 1)!zn+1

n!zn

∣∣∣∣ = lim
n→∞

n|z|.

This limit is infinite if z 6= 0 and is 0 when z = 0. Hence, the series converges only
when z = 0 and so its radius of convergence is 0.

(d) Ratio test, last time:

lim
n→∞

∣∣∣∣zn+1/(1 + 2n+1)

zn/(1 + 2n)

∣∣∣∣ = lim
n→∞

1 + 2n

1 + 2n+1
|z| = lim

n→∞

2−n + 1

2−n + 2
|z| = |z|

2
.

As above, this implies the series converges (absolutely) for |z| < 2 and diverges for
|z| > 2, i.e. the radius of convergence is 2.

3.2.4 Let f(z) = sin z. Since f ′(z) = cos z, f ′′(z) = − sin z, f ′′′(z) = − cos z and f (4)(z) =
sin z = f(z), it is easy to verify inductively that

f (4k)(0) = sin 0 = 0

f (4k+1)(0) = cos 0 = 1 = (−1)2k

f (4k+2)(0) = − sin 0 = 0

f (4k+3)(0) = − cos 0 = −1 = (−1)2k+1

for k ≥ 0. Hence, all of the even power terms in the Taylor series at z0 = 0 vanish while the
odd power terms are given by (−1)nz2n+1/(2n + 1)!. Since sin z is entire, its Taylor series at
z0 = 0 converges everywhere and we have

sin z =
∞∑

n=0

(−1)nz2n+1

(2n + 1)!
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for all z ∈ C.

Because the Taylor series for sin z has an infinite radius of convergence, it may be differ-
entiated termwise:

cos z =
d

dz
sin z =

d

dz

∞∑
n=0

(−1)nz2n+1

(2n + 1)!
=

∞∑
n=0

(−1)nz2n

(2n)!

for all z ∈ C. Uniqueness of power series guarantees that this is the Taylor series for cos z
at z0 = 0.

If g(z) = (1 + z)α (α 6= 0), another easy induction can be used to verify that

g(n)(z) = α(α− 1)(α− 2) · · · (α− n + 1)(1 + z)α−n

for n ≥ 1. We note that when α is a positive integer this formula is still valid for n > α,
since then one of the terms in the product is zero. If we use the principal branch of the
logarithm to compute the power function, we obtain

g(n)(0) = α(α− 1)(α− 2) · · · (α− n + 1)

for n ≥ 1 and so the Taylor series for (1 + z)α about z0 = 0 is

1 +
∞∑

n=1

α(α− 1)(α− 2) · · · (α− n + 1)

n!
zn =

∞∑
n=0

(
α

n

)
zn.

If α is not a positive integer, then (1 + z)α fails to be analytic at z = −1 (because the
logarithm does) and so the Taylor series has radius of convergence 1. However, when α ∈ Z+

the function (1 + z)α is entire and so the Taylor series (really just a polynomial in this case)
has infinite radius of convergence.

3.2.6 It is straightforward to verify that if

f(z) =
1

1 + ez

then:

f ′(z) =
−ez

(1 + ez)2

f ′′(z) =
e2z − ez

(1 + ez)3

f ′′′(z) =
−e3z + 4e2z − ez

(1 + ez)4
.
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Hence

f(0) =
1

2

f ′(0) =
−1

4
f ′′(0) = 0

f ′′′(0) =
1

8

and so the first four terms of the Taylor expansion of f(z) at z0 = 0 are

1

2
− 1

4
z +

1

48
z3.

The radius of convergence of this Taylor series is the distance from 0 to the nearest point
at which f(z) fails to be analytic. Since z = ±πi are equidistant from 0, the radius of
convergence is π.

3.2.8

(a) Since sin z is entire, we can use the Taylor series for sin z to compute its value at any
point. In particular, we have

sin z2 =
∞∑

n=0

(−1)n(z2)2n+1

(2n + 1)!
=

∞∑
n=0

(−1)nz4n+2

(2n + 1)!
.

By uniqueness of power series expansions, this must be the Taylor series for sin z at
z0 = 0.

(b) As above, since ez is entire, we have

e2z =
∞∑

n=0

(2z)n

n!
=

∞∑
n=0

2nzn

n!

and uniqueness again guarantees this is the Taylor series for e2z at z0 = 0.

3.2.14 Let

g(z) =
∞∑

n=0

bn(z − z0)
n

denote the Taylor series of f around z0. If |z − z0| < R − |z0| then the triangle inequality
gives

|z| ≤ |z − z0|+ |z0| < R− |z0|+ |z0| = R.
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Therefore z ∈ A (the disk of convergence of f). It follows that D(z0, R − |z0|) ⊂ A and
since f is analytic on A, Taylor’s theorem implies that g converges to f on D(z0, R − |z0|),
i.e. the radius of convergence of g is at least R − |z0|. In other words (or other symbols?)

R̃ ≥ R− |z0|.

The other inequality is somewhat more difficult to establish. Assume, for the sake of

contradiction, that R̃ > R + |z0|. Let B = {z ∈ C : |z − z0| < R̃} (i.e. B is the disk of

convergence of g) and let ε = R̃ − (R + |z0|) > 0. I first claim that D(0, R + ε/2) ⊂ B. To
prove this, let z ∈ D(0, R + ε/2). Then

|z− z0| ≤ |z|+ |z0| < R +
ε

2
+ |z0| = R +

R̃

2
− R

2
− |z0|

2
+ |z0| =

R̃

2
+

R + |z0|
2

<
R̃

2
+

R̃

2
= R̃

which proves that z ∈ B and, since z ∈ D(0, R + ε/2) was arbitrary, establishes the claim.

We will use the claim to arrive at a contradiction. The function g is analytic on B which,
as we have just seen, contains D(0, R + ε/2). In particular, if F (z) denotes the Taylor series
for g(z) centered at 0, then the radius of convergence of F (z) is at least R + ε/2. However,
since A ⊂ D(0, R + ε/2), for z ∈ A we have f(z) = g(z) and therefore the Taylor series for g
at zero is exactly the same as the Taylor series for f at zero. That is, F (z) and f(z) are the
same series. Since F converges on D(0, R + ε/2), so too then does f . But this contradicts
the fact that the radius of convergence of f is exactly R. Hence, or original assumption (that

R̃ > R + |z0|) must be false and we conclude that R̃ ≤ R + |z0|.

3.2.20 Let
∞∑

n=0

an(z − z0)
n

have radius or convergence R < ∞. Let z, w ∈ C be on circle of convergence, i.e. let
|w − z0| = |z − z0| = R. Then we have
∞∑

n=0

|an(w − z0)
n| =

∞∑
n=0

|an||w − z0|n =
∞∑

n=0

|an|Rn =
∞∑

n=0

|an||z − z0|n =
∞∑

n=0

|an(z − z0)
n|.

Therefore, if the series converges absolutely at z it converges absolutely at w as well. It follows
that if the power series converges absolutely at a single point on the circle of convergence then
it converges absolutely at all such points. Hence, the series converges absolutely nowhere or
everywhere on the circle of convergence.

As examples of each situation, consider the two power series
∞∑

n=1

zn

n

and
∞∑

n=1

zn

n2
.
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Both series have radius of convergence 1, as is readily verified using the ratio test, but the
former does not converge absolutely when |z| = 1 (it becomes the harmonic series in that
case) and the latter does converge absolutely when |z| = 1 (it becomes a p-series in that case
with p = 2).

3.2.24 Since the series for ζ(z) converges uniformly on closed disks in the half plane {Re z >
1}, we can differentiate the series term-wise to compute the derivatives necessary for the
Taylor expansion. Indeed, we have:

dk

dzk
ζ(z) =

dk

dzk

∞∑
n=1

n−z

=
∞∑

n=1

dk

dzk
n−z

=
∞∑

n=1

dk

dzk
e−z log n

=
∞∑

n=1

(− log n)k e−z log n

=
∞∑

n=1

(− log n)k n−z

for Re z > 1. Therefore

ζ(k)(2) =
∞∑

n=1

(− log n)k n−2

and the Taylor series is

∞∑
k=0

1

k!

(
∞∑

n=1

(− log n)k n−2

)
(z − 2)k.
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