In the following exercises, $f(x)$ denotes a real-valued function defined on $[a, \infty)$ for some $a \in \mathbb{R}$.

Exercise 1. Prove that $\limsup _{x \rightarrow \infty}|f(x)|=0$ implies that $\lim _{x \rightarrow \infty} f(x)=0$.

Exercise 2. Prove that if $\alpha=\limsup _{x \rightarrow \infty} f(x)$ then for any $\epsilon>0$ there is an $x_{0} \geq a$ so that $f(x)<\alpha+\epsilon$ for all $x \geq x_{0}$. Prove that this converse of this statement is false.

