In the following exercises, \(f(x) \) denotes a real-valued function defined on \([a, \infty)\) for some \(a \in \mathbb{R} \).

Exercise 1. Prove that \(\limsup_{x \to \infty} |f(x)| = 0 \) implies that \(\lim_{x \to \infty} f(x) = 0 \).

Exercise 2. Prove that if \(\alpha = \limsup_{x \to \infty} f(x) \) then for any \(\epsilon > 0 \) there is an \(x_0 \geq a \) so that \(f(x) < \alpha + \epsilon \) for all \(x \geq x_0 \). Prove that this converse of this statement is false.