Number Theory II

Fall 2008

Exercise 1. Let $n \in \mathbb{N}, n \geq 2$. Recall that if $f \in \widehat{\mathbb{Z} / n \mathbb{Z}}$ then there is a unique $k \in$ $\{0,1, \ldots, n-1\}$ so that $f(\overline{1})=e^{2 k \pi i / n}$ and that we used this fact to define $\phi: \widehat{\mathbb{Z} / n \mathbb{Z}} \rightarrow \mathbb{Z} / n \mathbb{Z}$ by $\phi(f)=\bar{k}$. Prove that ϕ is an isomorphism.

Exercise 2. Let G and H be groups.
a. Let $f \in \widehat{G \times H}$. For $a \in G, b \in H$ define $f_{G}(a)=f(a, e)$ and $f_{H}(b)=f(e, b)$. Prove that $f_{G} \in \widehat{G}$ and $f_{H} \in \widehat{H}$.
b. Let $f_{1} \in \widehat{G}$ and $f_{2} \in \widehat{H}$ and define $f(a, b)=f_{1}(a) f_{2}(b)$ for $(a, b) \in G \times H$. Prove that $f \in \widehat{G \times H}$ and that $f_{G}=f_{1}$ and $f_{H}=f_{2}$.

These two facts complete the proof that $\widehat{G \times H} \cong \widehat{G} \times \widehat{H}$.

