Exercise 1. Let a be a nonnegative real number and f a function that is Riemann integrable on every finite subinterval of $[a, \infty)$. Let

$$
\bar{f}(x)=\frac{1}{x} \int_{a}^{x} f(t) d t
$$

for $x \in[a, \infty), x>0$. Prove that $\lim _{x \rightarrow \infty} f(x)=0$ implies that $\lim _{x \rightarrow \infty} \bar{f}(x)=0$.

Exercise 2.

a. Prove the analogue of the statement of Exercise 1 with the limit 0 replaced by an arbitrary L. [Hint: Consider the function $f(x)-L$.]
b. Show that the converse of the statement in Exercise 1 is false.

