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understood these guidelines by signing your name in the space provided:
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1. Let {an} be a sequence of real numbers satisfying

A(x) =
∑
n≤x

an = O(xc).

Prove that the series

f(s) =
∞∑

n=1

an

ns

converges for s > c.

2. Consider the following statement: for all h, k ∈ N with (h, k) = 1 there exists a prime
number p so that p ≡ h (mod k). Prove that this statement implies Dirichlet’s theorem.

3. Let χ be a Dirichlet character mod k.

a. If k is squarefree, prove that k is the smallest positive period of χ.

b. If k = 2p, p an odd prime, and χ is nonprincipal, prove that χ has conductor p.

4. Let χ be the Dirichlet character mod 10 satisfying χ(3) = −i. Compute L(1, χ). Express
your answer in terms of radicals and i only. You may find it useful to know that

cos
(π

5

)
=

1 +
√

5

4
, cos

(
3π

5

)
=

1−
√

5

4
.

5. Let χ be a nonprincipal Dirichlet character mod k satisfying χ(−1) = 1.

a. Prove that
[ k+1

2 ]−1∑
m=1

χ(m) = 0.

[Suggestion: Begin with the sum up to k and then pair appropriate terms. It might be
helpful to consider the k even and k odd cases separately.]

b. Prove that
k∑

m=1

χ(m)m = 0.

6. Show that

lim
x→∞

∑
√

x<p≤x

1

p
= log 2.

7. If s > 0, s 6= 1, prove that∑
n≤x

d(n)

ns
=

x1−s log x

1− s
+ ζ(s)2 + O

(
x1−s

)
.



Use this to prove that the sum
∞∑

n=1

d(n)

n2

converges and find its value.

8. Prove that there is a constant B so that for x ≥ 2∑
2≤n≤x

1

n log n
= log log x + B + O

(
1

x log x

)
.

9. Prove that the sum
∑

p

1

p log p
converges.

10. Fix k ∈ N with k ≥ 2. Call an integer n ∈ N k-power free if it is not divisible by the
kth power of any prime.

a. Show that every n ∈ N can be written uniquely as n = akb where b is k-power free.

b. Given n ∈ N write n = akb as in part (a) and set Fk(n) = b. Prove that

∑
d|n

µ (Fk(d)) =

{
1 if n is a kth power,

0 otherwise.

c. Deduce that
µ (Fk(n)) =

∑
dk|n

µ
( n

dk

)
and ∑

n≤x

µ (Fk(n))
[x

n

]
=

[
k
√

x
]
.


