

Number Theory I Spring 2012 Assignment 1 Due January 19

Exercise 1. Show that the square of any integer must have the form 3k or 3k + 1. [*Hint:* Given $n \in \mathbb{Z}$, according to the Division Algorithm n = 3q + r where r = 0, 1 or 2. Consider what happens when you square n in each case.]

Exercise 2. Use the preceding exercise to prove that there are no integer solutions to the equation $3a^2 - b^2 = 1$.

Exercise 3. Show that the cube of any integer has the form 7k or $7k \pm 1$.

Exercise 4. Argue as in Exercise 1 to show that for any integer *a*:

a. 2|a(a + 1).
b. 3|a(a + 1)(a + 2).

Exercise 5. Show that if a and b are odd, then $8|(a^2 - b^2)$.

Exercise 6. Show that $d = \gcd(6a + 5b, 10a + 8b)$ is a common divisor of 2a and b. Is it true that d|a?