Number Theory I

Exercise 1. Show that the square of any integer must have the form $3 k$ or $3 k+1$. [Hint: Given $n \in \mathbb{Z}$, according to the Division Algorithm $n=3 q+r$ where $r=0,1$ or 2 . Consider what happens when you square n in each case.]

Exercise 2. Use the preceding exercise to prove that there are no integer solutions to the equation $3 a^{2}-b^{2}=1$.

Exercise 3. Show that the cube of any integer has the form $7 k$ or $7 k \pm 1$.

Exercise 4. Argue as in Exercise 1 to show that for any integer a :
a. $2 \mid a(a+1)$.
b. $3 \mid a(a+1)(a+2)$.

Exercise 5. Show that if a and b are odd, then $8 \mid\left(a^{2}-b^{2}\right)$.

Exercise 6. Show that $d=\operatorname{gcd}(6 a+5 b, 10 a+8 b)$ is a common divisor of $2 a$ and b. Is it true that $d \mid a$?

