Number Theory I
Spring 2012
Assignment 2.1
Due January 24

Exercise 1. Show that the product of any three consecutive integers is divisible by 6 . [Suggestion: Use Exercise 4 from the previous assignment.]

Exercise 2. Prove that if $n \geq 0$, then $(3 n)!/(3!)^{n}$ is an integer.

Exercise 3. Prove the following properties of the greatest common divisor.
a. If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$. [Suggestion: Express the first two gcds as linear combinations, then multiply these expressions together.]
b. If $\operatorname{gcd}(a, b)=1$ and $c \mid a$, then $\operatorname{gcd}(c, b)=1$.
c. If $\operatorname{gcd}(a, b)=1, d \mid a c$ and $d \mid b c$, then $d \mid c$.
d. If $a \mid b c$ then $a \mid \operatorname{gcd}(a, b) \operatorname{gcd}(a, c)$. [See the suggestion for part a.]

Exercise 4. Let a, b be nonzero and let k be positive. Prove that $\operatorname{lcm}(k a, k b)=k \operatorname{lcm}(a, b)$. [Suggestion: Use the relationship between the gcd and the lcm.]

Exercise 5. Prove that if a and b are positive, then the following are equivalent.
a. $a \mid b$
b. $\operatorname{gcd}(a, b)=a$
c. $\operatorname{lcm}(a, b)=b$

Exercise 6. Let a and b be nonzero. Prove that $\operatorname{lcm}(a, b)$ divides every common multiple of a and b. [Suggestion: Show that when a common multiple n is divided by $\operatorname{lcm}(a, b)$, the remainder in the Division Algorithm is also a common multiple.]

