Number Theory I
Assignment 3.2
Spring 2012

Due January 31

Exercise 1. Let $p \geq 2$. Suppose that p has the following property: for any a and b, if $p \mid a b$ then $p \mid a$ or $p \mid b$. Prove that p is prime. [Suggestion: Argue by contradiction.]

Exercise 2. Let p be a prime and let n be nonzero. Prove that there exist a unique $k \geq 0$ and nonzero m so that $n=p^{k} m$ and $p \nmid m$. The number k is called the p-adic valuation of n and is denoted $\nu_{p}(n)$.

Exercise 3. Prove that the p-adic valuation has the following properties. For all nonzero m and n :
a. $\nu_{p}(m n)=\nu_{p}(m)+\nu_{p}(n)$.
b. $\nu_{p}(m+n) \geq \min \left\{\nu_{p}(m), \nu_{p}(n)\right\}($ provided $m+n \neq 0)$.
c. The inequality in \mathbf{b}. is actually an equality in the case that $\nu_{p}(m) \neq \nu_{p}(n)$.
[Remark: The uniqueness statement in Exercise 1 is useful here, for it tells us that any time we write $n=p^{k} m$ with $k \geq 0$ and $p \nmid m$, we must have $k=\nu_{p}(n)$.]

Exercise 4. Let $p_{1}, p_{2}, \ldots, p_{r}$ be distinct primes and let $a_{1}, a_{2}, \ldots, a_{r}$ be nonnegative. Let $k \geq 2$. If

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}},
$$

prove that n is a $k^{t h}$ power (i.e. $n=m^{k}$ for some integer m) if and only if $k \mid a_{i}$ for all i.

Exercise 5. An integer n is called square-free if it is not divisible by the square of any integer greater that 1.
a. Prove that n is square-free if and only if n can be factored into a product of distinct primes.
b. Prove that any integer $n>1$ is the product of a square-free integer and a perfect square.

