

Number Theory I Spring 2012

Assignment 4.1 Due February 7

Exercise 1. As a generalization of the notion of twin primes, one might define a prime triplet to be a triple of integers (p, p + 2, p + 4), all of which are prime. Prove that this definition isn't very "interesting" by showing that (3, 5, 7) is the only prime triplet.

Exercise 2. A better definition of prime triplet might be a triple of the form (p, p+2, p+6), for which all three entries are prime. Find five prime triplets using this definition.

Exercise 3. Find a prime divisor of $N = 4(3 \cdot 7 \cdot 11) - 1$ of the form 4n + 3. Do the same for $N = 4(3 \cdot 7 \cdot 11 \cdot 15) - 1$.

Exercise 4. Let p_n denote the *n*th prime. Use induction and Bertrand's postulate to prove that for n > 3,

$$p_n < p_1 + p_2 + \dots + p_{n-1}.$$

Exercise 5. Prove that there are infinitely many primes of the form 6n + 5.

Exercise 6. Prove that for any $n \ge 2$ the arithmetic progression

$$a+b, a+2b, a+3b, \ldots$$

where gcd(a, b) = 1, contains *n* consecutive composite terms. [Suggestion: Let $k = (a + b)(a + 2b) \cdots (a + nb)$ and consider *n* consecutive terms beginning with a + (k + 1)b.]