Number Theory I
Assignment 4.1
Spring 2012
Due February 7

Exercise 1. As a generalization of the notion of twin primes, one might define a prime triplet to be a triple of integers $(p, p+2, p+4)$, all of which are prime. Prove that this definition isn't very "interesting" by showing that $(3,5,7)$ is the only prime triplet.

Exercise 2. A better definition of prime triplet might be a triple of the form $(p, p+2, p+6)$, for which all three entries are prime. Find five prime triplets using this definition.

Exercise 3. Find a prime divisor of $N=4(3 \cdot 7 \cdot 11)-1$ of the form $4 n+3$. Do the same for $N=4(3 \cdot 7 \cdot 11 \cdot 15)-1$.

Exercise 4. Let p_{n} denote the nth prime. Use induction and Bertrand's postulate to prove that for $n>3$,

$$
p_{n}<p_{1}+p_{2}+\cdots+p_{n-1} .
$$

Exercise 5. Prove that there are infinitely many primes of the form $6 n+5$.

Exercise 6. Prove that for any $n \geq 2$ the arithmetic progression

$$
a+b, a+2 b, a+3 b, \ldots
$$

where $\operatorname{gcd}(a, b)=1$, contains n consecutive composite terms. [Suggestion: Let $k=(a+$ $b)(a+2 b) \cdots(a+n b)$ and consider n consecutive terms beginning with $a+(k+1) b$.]

